Mechanical properties of metals and alloys

Material strength

Steel has one important property - strength. Tests are carried out to determine the strength of the material. A steel rod of the selected grade is stretched, and then it is checked how the sample has changed after the applied forces. Based on the test results, a graph is drawn up, which indicates the applied force (stress) and the level of deformation.

Metal has such an important parameter as its yield strength. The yield strength of a sample can be determined by testing. If minor loads were applied to the workpiece, its shape will be restored. When the stress applied to the workpiece goes beyond the yield point, the sample will undergo irreversible changes.

The purpose of the test is to determine the maximum stress that the specimen can withstand. Therefore, the tests continue until the sample ruptures. In this case, testers will learn what the tensile strength of the steel is.

Strength of steels

The mechanical properties of steels, like other metallic materials, are most often determined using a tensile test. A tensile test involves applying a tensile force to a sample - most often in the form of a rod - and measuring the change in length of the sample as the applied force increases (Figure 1). The sample is cut from the material or product of interest. The test result is a tensile diagram - a graph on which stress is plotted vertically (force per unit area of ​​the sample), and deformation (relative change in the length of the sample) is plotted horizontally.


Figure 1 – Stress-strain diagram when testing a tensile specimen

At small deformations, the rod behaves elastically—it “springs back” back to its original length if the applied stresses are removed. When the stress is above a value called the yield strength, the rod begins to deform plastically. This means that after the applied stress is removed, the rod no longer returns to its original length, but receives an irreversible elongation. By stretching the rod until failure, find the maximum stress on the stress-strain diagram. This maximum stress is called the tensile strength or tensile strength of the material from which the specimen was made.

Product hardness

Steel has hardness, which is measured using an indenter. An indenter is a material that is driven into steel until an imprint is left. Of course, it must be stronger and harder than steel. The best material for such a tool is diamond. Hardness is measured using the Rockwell scale, and the hardness of the workpiece can also be determined using the Brinnell and Vickers scale. By measuring Rockwell hardness, the depth of the indenter mark on the workpiece is determined. There is a relationship between hardness and strength in hardened steels when properly tempered.

Plasticity of metal

Steel is characterized by ductility; this property cannot be underestimated. Thanks to its ductility, steel can be used to create any workpieces and products. Not all steels are ductile. If a material is not ductile, then it is brittle, and those that are brittle have become vulnerable. Products made from such materials may collapse as a result of mechanical stress. If ductile steel bends under mechanical stress, then brittle steel breaks.

You can check ductility (or brittleness) using the tensile test already described above. After reaching the yield point, the plastic workpiece will begin to stretch well. A fragile sample will simply break. In a similar way, you can test the material for contraction by applying force in the opposite direction.

Plasticity of steels

If, in a simple bending test, the metal fails only after a large plastic deflection, then it is considered ductile. If there is no such deflection at all or it is insignificant, the material is called brittle. Good ductility of the metal is manifested during tensile testing by a high elongation of the sample and/or its narrowing. Elongation expresses the percentage increase in the length of a specimen after failure to its original length (see Figure 1). Similarly, contraction expresses the percentage reduction in the area of ​​the sample compared to its original area (Figure 2).


Figure 2 – Tensile diagram for brittle and ductile metals

Most often, the mechanical properties of steels as a whole are assessed by three indicators: tensile strength, yield strength and elongation. The strength and ductility limits are usually expressed in megapascals (MPa), elongation - in percent (%). Almost always, as the strength of a metal or alloy increases, its ductility decreases.

Metal fatigue

Metal fatigue is a property that describes the destruction of steels under the influence of cyclic loads. Fatigue failure occurs as follows. For example, we can take a part that is subjected to tensile loads in one part and compressive loads in the other. Cyclic stress occurs, but it is below the yield stress. The part will work for a long time until a point of stress concentration appears on its surface. It could be a minor scratch or nick.

After scoring occurs, the stress at the point of concentration will exceed the yield strength. This will lead to cracks and more serious defects. As a result, the part will collapse. Shafts, springs, and wheel axles experience similar loads. They are subject to cyclic loads.

Metal fatigue is also characteristic of those parts that constantly experience vibrating loads. For example, this happens with parts on airplane wings. It is almost impossible to prevent destruction; the only way is regular inspection and prevention. If a part is damaged, it is safer to replace it. Steel valves in automobile engines are susceptible to fatigue. At the slightest damage, components are replaced.

December 05, 2017

Share with friends:

Appendix 2. Mechanical characteristics of steels

Home / Services / GOSTs and SNiPs / GOST 14249-89 Vessels and apparatus. Norms and methods of strength calculations /

print version

Mechanical characteristics: for carbon and low-alloy steels - table. 1 and 2, for heat-resistant chromium steels - table. 3 and 4, for heat-resistant, heat-resistant and corrosion-resistant steels of the austenitic and austenitic-ferritic class - table. 5 and 6

Table 9

210(2100) 300(3000) 280(2800) 220(2200) 195(1950) 270(2700) 280(2800)
100 230(2300) 201(2010) 265,5(2655) 240(2400) 213(2130) 188(1880) 240(2400) 240(2400)
150 224(2240) 197(1970) 256,5(2565) 231(2310) 209(2090) 183(1830) 231(2310) 231(2310)
200 223(2230) 189(1890) 247,5(2475) 222(2220) 204(2040) 177(1770) 222(2220) 222(2220)
250 197(1970) 180(1800) 243(2430) 218(2180) 198(1980) 168(1680) 218(2180) 218(2180)
300 173(1730) 162(1620) 226,5(2265) 201(2010) 179(1790) 150(1500) 201(2010) 201(2010)
350 167(1670) 147(1470) 210(2100) 185(1850) 159(1590) 132(1320) 185(1850) 185(1850)
375 164(1640) 140(1400) 199,5(1995) 174(1740) 147(1470) 123(1230) 162(1620) 174(1740)
400 183(1830) 158(1580) 158(1580)
410 156(1560) 156(1560)
420 138(1380) 138(1380)

Table 10

Design temperature of the vessel or apparatus wall, °C Calculated value of tensile strength Rt, MPa (kgf/cm2), for steel grades
VSt3 09G2S, 16GS 20 and 20K 10 10G2, 09G2, 17GS, 17G1S, 10G2S1
thickness, mm
up to 20 over 20 up to 32 over 32 up to 160
20 460(4600) 380(3800) 470(4700) 440(4400) 410(4100) 340(3400) 440(4400)
100 435(4350) 360(3600) 425(4250) 385(3850) 380(3800) 310(3100) 385(3850)
150 460(4600) 390(3900) 430(4300) 430(4300) 425(4250) 340(3400) 430(4300)
200 505(5050) 420(4200) 439(4390) 439(4390) 460(4600) 382(3820) 439(4390)
250 510(5100) 435(4350) 444(4440) 444(4440) 460(4600) 400(4000) 444(4440)
300 520(5200) 440(4400) 445(4450) 445(4450) 460(4600) 374(3740) 445(4450)
350 480(4800) 420(4200) 441(4410) 441(4410) 430(4300) 360(3600) 441(4410)
375 450(4500) 402(4020) 425(4250) 425(4250) 410(4100) 330(3300) 425(4250)

Table 11

Design temperature of the vessel or apparatus wall, °C Calculated value of the yield strength Rp0.2, MPa (kgf/cm2), for steel grades
12MH 12ХМ 15ХМ 15Х5М 15Х5М-У
20 220(2200) 220(2200) 233(2330) 220(2200) 400(4000)
100 219(2190) 219(2190) 230(2300) 210(2100) 352,5(3525)
150 218(2180) 218(2180) 229(2290) 207(2070) 345(3450)
200 217,5(2175) 217,5(2175) 228(2280) 201(2010) 337,5(3375)
250 217,5(2175) 217,5(2175) 228(2280) 190(1900) 330(3300)
300 212(2120) 212(2120) 220(2200) 180(1800) 315(3150)
350 206(2060) 206(2060) 213(2130) 171(1710) 300(3000)
375 202(2020) 202(2020) 210(2100) 164(1640) 270(2700)
400 198(1980) 198(1980) 205(2050) 158(1580) 255(2550)
410 195(1950) 195(1950) 204(2040) 155(1550) 240(2400)
420 194(1940) 194(1940) 202(2020) 152(1520) 225(2250)

Table 12

Design temperature of the vessel or apparatus wall, °C Calculated value of tensile strength Rt, MPa (kgf/cm2), for steel grades
12MH 12ХМ 15ХМ 15Х5М 15Х5М-У
20 450(4500) 450(4500) 450(4500) 400(4000) 600(6000)
100 440(4400) 440(4400) 440(4400) 380(3800) 572(5720)
150 434(4340) 434(4340) 434(4340) 355(3550) 555(5550)
200 430(4300) 430(4300) 430(4300) 330(3300) 535(5350)
250 440(4400) 437(4370) 437(4370) 320(3200) 520(5200)
300 454(4540) 445(4450) 445(4450) 318(3180) 503(5030)
350 437(4370) 442(4420) 442(4420) 314(3140) 492(4920)
375 427(4270) 436(4360) 436(4360) 312(3120) 484(4840)
400 415(4150) 426(4260) 426(4260) 310(3100) 472(4720)
410 413(4130) 424(4240) 424(4240) 306(3060) 468(4680)
420 410(4100) 421(4210) 421(4210) 300(3000) 462(4620)

Table 13

Design temperature of the vessel or apparatus wall, °C Calculated value of the yield strength Rp0.2, MPa (kgf/cm2), for steel grades
08Х18Г8Н2Т (KO-3) 07X13AG20 (ChS-46) 02Х8Н22С6 (EP-794) 15Х18Н12С4ТУ (EI-654) 08Х22Н6Т, 08Х21Н6М2Т 06ХН28МДТ, 03ХН28мдт
20 350(3500) 350(3500) 200(2000) 350(3500) 350(3500) 220(2200)
100 328(3280) 260(2600) 160(1600) 330(3300) 300(3000) 207(2070)
150 314(3140) 230(2300) 150(1500) 310(3100) 280(2900) 195(1950)
200 300(3000) 200(2000) 135(1350) 300(3000) 283(2830) 186(1860)
250 287(2870) 190(1900) 125(1250) 280(2800) 250(2500) 175(1750)
300 274(2740) 180(1800) 115(1150) 270(2700) 240(2400) 165(1650)
350 170(1700) 160(1600)
375 165(1650) 157,5(1575)
400 160(1600) 155(1550)

Table 14

Design temperature of the wall of the vessel or apparatus, °C Calculated value of tensile strength Rt, MPa (kgf/cm2), for steel grades
08Х18Г8Н2Т (KO-3) 07X13AG20 (ChS-46) 02Х8Н22С6 (EP-794) 15Х18Н12С4ТУ (EI-654) 06ХН28МДТ, 03ХН28мдт
20 600(6000) 670(6700) 550(5500) 700(7000) 550(5500)
100 535(5350) 550(5500) 500(5000) 640(6400) 527,5(5275)
150 495(4950) 520(5200) 480(4800) 610(6100) 512,5(5125)
200 455(4550) 490(4900) 468(4680) 580(5800) 500(5000)
250 415(4150) 485(4850) 450(4500) 570(5700) 490(4900)
300 375(3750) 480(4800) 440(4400) 570(5700) 482,5(4825)
350 465(4650) 478(4780)
375 458(4580) 474(4740)
400 450(4500) 470(4700)

Table 15

Design temperature of the vessel or apparatus wall, °C Calculated value of the yield strength Rp1.0, MPa (kgf/cm2), for steel grades
12Х18Н10Т, 12Х18Н12Т, 10Х17Н13М2Т, 10Х17Н13М3Т 08Х18Н10Т, 08Х18Н12Т, 08Х17Н13М2Т, 08Х17Н15М3Т 03Х21Н21М4ГБ 03Х18Н11 03Х17Н14М3
20 276(2760) 252(2520) 270(2700) 240(2400) 230(2300)
100 261(2610) 234(2340) 260(2600) 200(2000) 210(2100)
150 252(2520) 222(2220) 257(2570) 187,5(1875) 195(1950)
200 240(2400) 210(2100) 257(2570) 180(1800) 180(1800)
250 231(2310) 198(1980) 250(2500) 173(1730) 170(1700)
300 222(2220) 184,5(1845) 223(2230) 168(1680) 155(1550)
350 216(2160) 169,5(1695) 215(2150) 162(1620) 152(1520)
375 210(2100) 162(1620) 212(2120) 160(1600) 135(1350)
400 205,5(2055) 154,5(1545) 210(2100) 160(1600) 130(1300)
410 204(2040) 153(1530) 160(1600) 125(1250)
420 202,5(2025) 151,5(1515) 160(1600) 123(1230)
430 201(2010) 150,75(1508) 160(1600) 122(1220)
440 199,5(1995) 150(1500) 160(1600) 121(1210)
450 198(1980) 148,5(1485) 160(1600) 120(1200)
460 196,5(1965) 147(1470)
470 195(1950) 146(1460)
480 93,5(1935) 145,5(1455)
490 192(1920) 144(1440)
500 190,5(1905) 142,5(1425)
510 189(1890) 141(1410)
520 187,5(1875) 139,5(1395)
530 186(1860) 138(1380)

Note. The yield strength for forgings, long products and pipes at 20 °C should be taken as follows:

- for forgings made of steel grades 12Х18Н10Т, 10Х17Н13М2Т, 10Х17Н13М3Т - ;

- for forgings and long products made of steel grade 08Х18Н10Т - ;

— for long rolled steel grades 12Х18Н10Т, 10Х17Н13М2Т, 10Х17Н13М3Т -;

- for forgings made of steel grades 03Х17Н14М3, 03Х18Н11 - ;

- for long products made of steel grade 03Х18Н11 - ;

- for pipes made of steel grade 03Х21Н21М4ГБ (ZI-35) - ;

- for forgings made of steel grade 03Х21Н21М4ГБ (ZI-35) - (forgings)

where the yield strength of the forging material is determined according to GOST 25054 (by agreement).

Table 16

Design temperature of the vessel or apparatus wall, °C Calculated value of the yield strength Rp0.2 MPa (kgf/cm2), for steel grades
12Х18Н10Т, 12Х18Н12Т, 10Х17Н13М2Т, 10Х17Н13М3Т 08Х18Н10Т, 08X18H12T, 08Х17Н13М2Т, 08X17H13M3T 03Х21Н21М4ГБ 03Х18Н11 03X17H14M3
20 240(2400) 210*(2100) 250(2500) 200(2000) 200(2000)
100 228(2280) 195(1950) 240(2400) 160(1600) 180(1800)
150 219(2190) 180(1800) 235(2350) 150(1500) 165(1650)
200 210(2100) 173(1730) 235(2350) 140(1400) 150(1500)
250 204(2040) 165(1650) 232(2320) 135(1350) 140(1400)
300 195(1950) 150(1500) 205(2050) 130(1300) 126(1260)
350 190(1900) 137(1370) 199(1990) 127(1270) 115(1150)
375 186(1860) 133(1330) 195(1950) 125(1250) 108(1080)
400 181(1810) 129(1290) 191(1910) 122,5(1225) 100(1000)
410 180(1800) 128(1280) 121,5(1215) 98(980)
420 180(1800) 128(1280) 121(1210) 97,5(975)
430 179(1790) 127(1270) 120,5(1205) 97(970)
440 177(1770) 126(1260) 120(1200) 96(960)
450 176(1760) 125(1250) 120(1200) 95(950)
460 174(1740) 125(1250)
470 173(1730) 124(1240)
480 173(1730) 123(1230)
490 171(1710) 122(1220)
500 170(1700) 122(1220)
510 168(1680) 120(1200)
520 168(1680) 119(1190)
530 167(1670) 119(1190)

* For steels 08Х17Н13М2Т, 08Х17Н15М3Т the yield strength at 20 °С is 200 (2000) MPa (kg/cm2).

Notes:

1. For forgings made of steel grades 12Х18Н10Т, 10Х17Н13М2Т, 10Х17Н13М3Т, the yield limits are given in table. 16, multiplied by 0.83.

2. For long rolled steel grades 12Х18Н10Т, 10Х17Н13М2Т, 10Х17Н13М3Т, the yield limits are given in table. 16, multiplied by

where R*p0.2 is the yield strength of the rolled section material, determined according to GOST 5949.

3. For forgings and long products made of steel grade 08Х18Н10Т, the yield limits given in table. 16, multiplied by 0.95.

4. For forgings made of steel grade 03Х17Н14М3 the yield limits given in table. 16, multiplied by 0.9.

5. For forgings made of steel grade 03Х18Н11, the yield limits given in table. 16, multiplied by 0.9; for long rolled steel grade 03Х18Н11, the yield limits are multiplied by 0.8.

6. For pipes made of steel grade 03Х21Н21М4ГБ (ZI-35), the yield limits given in table. 16, multiplied by 0.88.

7. For forgings made of steel grade 03Х21Н21М4ГБ (ZI-35), the yield limits given in table. 16, multiplied by the ratio

where R*p0.2 is the yield strength of the forging material, determined according to GOST 25054 (by agreement).

Table 17

Design temperature of the vessel or apparatus wall, °C Calculated value of tensile strength Rt, MPa (kgf/cm2), for steel grades
03Х21Н21М4ГБ 08Х22Н6Т, 08Х21Н6М2Т 03Х17Н14М3 03Х18Н11 08Х18Н10Т, 08Х18Н12Т, 08Х17Н13М2Т, 08Х17Н15М3Т 12Х18Н10Т, 12Х18Н12Т, 10Х17Н13М2Т, 10Х17Н13М3Т
20 550(5500) 600(6000) 500(5000) 520(5200) 520(5200) 540(5400)
100 540(5400) 583(5830) 474(4740) 450(4500) 480(4800) 500(5000)
150 535(5350) 550(5500) 453(4530) 433(4330) 455(4550) 475(4750)
200 535(5350) 515(5150) 432(4320) 415(4150) 430(4300) 450(4500)
250 534(5340) 503(5030) 412(4120) 405(4050) 424(4240) 443(4430)
300 520(5200) 500(5000) 392(3920) 397(3970) 417(4170) 440(4400)
350 518(5180) 376(3760) 394(3940) 408(4080) 438(4380)
375 517(5170) 368(3680) 392(3920) 405(4050) 437(4370)
400 516(5160) 360(3600) 390(3900) 402(4020) 436(4360)
410 358(3580) 388(3880) 400(4000) 434(4340)
420 356(3560) 386(3860) 398(3980) 432(4320)
430 354(3540) 384(3840) 396(3960) 431(4310)
440 352(3520) 382(3820) 394(3940) 430(4300)
450 350(3500) 380(3800) 392(3920) 428(4280)
460 390(3900) 426(4260)
470 388(3880) 424(4240)
480 386(3860) 422(4220)
490 385(3850) 421(4210)
500 383(3830) 420(4200)
510 381(3810) 418(4180)
520 380(3800) 416(4160)
530 374*(3740) 412*(4120)

* For a design wall temperature of 550 °C.

<< back / top / forward >>

April 19, 2012

Rating
( 2 ratings, average 5 out of 5 )
Did you like the article? Share with friends: