Основные сведения о жаростойких и жаропрочных сплавах
Жаропрочные сплавы и стали — материалы, работающие при высоких температурах в течение заданного периода времени в условиях сложно-напряженного состояния и обладающие достаточным сопротивлением к коррозии в газовых средах.
Жаростойкие сплавы и стали — материалы, работающие в ненагруженном или слабо-нагруженном состоянии при повышенных температурах (более 550 °C) и обладающие стойкостью к коррозии в газовых средах.
Активный интерес к подобным материалам стал проявляться в конце 30-х годов XX века, когда появилась необходимость в материалах способных работать при достаточно высоких температурах. Это связано с развитием реактивной авиации и газотурбинных двигателей.
Основой жаростойких и жаропрочных сплавов могут быть никель, кобальт, титан, железо, медь, алюминий. Наиболее широкое распространение получили никелевые сплавы. Они могут быть литейными, деформируемыми и порошковыми. Наиболее распространенными среди жаропрочных являются литейные сложнолегированные сплавы на никелевой основе, способные работать до температур 1050-1100 °C в течение сотен и тысяч часов при высоких статических и динамических нагрузках.
Основные типы
Наиболее распространены сплавы на основе железа. Это хромистые, хромоникелевые, а также хромомарганцевые стали с молибденовыми, титановыми и вольфрамовыми присадками. Также производят сплавы с такими легирующими элементами, как алюминий, ниобий, ванадий, бор, но в меньших количествах.
В большинстве случаев процент добавления присадок в сталь достигает от 15 до 50%
Вторая, весьма востребованная группа — сплавы на никелевой основе. В качестве присадки используется хром. Жаропрочность также повышают добавки титана, церия, кальция, бора и сходных по составу элементов. В отдельных технологических комплексах востребованы сплавы на основе никеля с молибденом.
К третьей группе относятся термостойкие сплавы на кобальтовой основе. Легирующими элементами для них служат углерод, вольфрам, ниобий, молибден.
В металлургии существует целый ряд материалов, который используется при легировании сталей:
- хром;
- никель;
- молибден;
- ванадий;
- ниобий;
- титан;
- марганец;
- Вольфрам;
- кремний;
- тантал;
- алюминий;
- медь;
- бор;
- кобальт;
- цирконий.
Широко используются редкоземельные элементы.
Химический состав
Определение химического состава жаростойких материалов — сложный процесс. Необходимо учитывать не только основные легирующие элементы, но и то, что попадает в продукцию как примеси или остаётся в результате химических реакций, протекающих во время плавки.
Специально добавленные легирующие элементы вводятся для получения необходимых технологических, физических и механических свойств. А примеси и образовавшиеся при плавке химические элементы могут ухудшать свойства высоколегированного металла.
Для хромоникелевых сплавов и огнеупорных материалов на основе кобальта опасно присутствие серы более 0,005%, следов олова, свинца, сурьмы и других легкоплавких металлов.
Структура и свойства
Жаропрочность определяется не только химическим составом металлов, но и формой, в которой примеси находятся в сплаве. Например, сера в виде сульфидов никеля снижает температуру плавления. А та же сера, соединённая с цирконием, церием, магнием образует тугоплавкие структуры. Большое влияние на жаропрочность оказывает чистота никеля или хрома. Однако следует учитывать, что свойства сплавов варьируются в зависимости от применяемой технологии.
Главное свойство, по которому определяют жаростойкость материала — ползучесть. Это явление постоянной деформации под непрерывным напряжением. Сопротивляемость материала разрушению под действием температуры.
жаростойкий сплав 6 букв
Нихром | Жаростойкий сплав 6 букв |
Бронза | Сплав меди, обычно с оловом как основным легирующим элементом, но применяются и сплавы с алюминием, кремнием, бериллием, свинцом и другими элементами, за исключением цинка и никеля. Название «бронза» происходит от итал. bronzo которое, в свою очередь, либо произошло от персидского слова «berenj», означающего «латунь», либо от названия города Бриндизи, из которого этот материал доставлялся в Рим 6 букв |
Электр | Природный сплав золота и серебра; сплав на основе магния 6 букв |
Нихром | Общее название группы сплавов, состоящих, в зависимости от марки сплава, из 55-78 % никеля, 15-23 % хрома, с добавками марганца, кремния, железа, алюминия 6 букв |
Бронза | Художественные изделия из такого сплава 6 букв |
Бронза | Сплав меди с оловом и некоторыми другими элементами 6 букв |
Запань | Ограждение на воде для хранения и сортировки леса; плавучая преграда поперек реки при молевом сплаве леса 6 букв |
Латунь | Сплав меди с цинком и другими элементами 6 букв |
Припой | Металл или сплав для заполнения зазоров при пайке 6 букв |
Сурьма | Химический элемент, серебристо-белый металл, употр. в различных сплавах в те хнике, в типографском деле 6 букв |
Классификация жаропрочных и жаростойких сплавов
Поскольку речь идет о жаростойких и жаропрочных сталях и сплавах, то стоит дать определение терминам жаропрочность, жаростойкость.
Термины и определения
Жаропрочность — способность сталей и сплавов выдерживать механические нагрузки при высоких температурах в течение определенного времени. При температурах до 600°С обычно применяют термин теплоустойчивость. Можно дать более строгое определение жаропрочности.
Под жаропрочностью также понимают напряжение, вызывающее заданную деформацию, не приводящую к разрушению, которое способен выдержать металлический материал в конструкции при определенной температуре за заданный отрезок времени. Если учитываются время и напряжение, то характеристика называется пределом длительной прочности; если время, напряжение и деформация — пределом ползучести.
Ползучесть — явление непрерывной деформации под действием постоянного напряжения. Длительная прочность — сопротивление материала разрушению при длительном воздействии температуры.
Жаростойкость характеризует сопротивление металлов и сплавов газовой коррозии при высоких температурах.
Классификация
Можно выделить несколько классификаций сплавов и сталей, которые работают при повышенных и высоких температурах.
Наиболее общей является следующая классификация жаростойких и жаропрочных сталей и сплавов:
- Теплоустойчивые стали — работают в нагруженном состоянии при температурах до 600°С в течение длительного времени. Примером являются углеродистые, низколегированные и хромистые стали ферритного класса.
- Жаропрочные стали и сплавы — работают в нагруженном состоянии при высоких температурах в течение определенного времени и обладают при этом достаточной жаростойкостью. Примерами являются стали аустенитного класса на хромоникелевой или хромоникельмарганцевой основах с различными легирующими элементами и сплавы на никелевой или кобальтовой основе.
- Жаростойкие (окалиностойкие) стали и сплавы — работают в ненагруженном или слабонагруженном состоянии при температурах выше 550°С и обладают стойкостью против химического разрушения поверхности в газовых средах. В качестве примера можно привести хромокремнистые стали мартенситного класса, хромоникелевые аустенитные стали, хромистые и хромоалюминиевые стали ферритного класса, а также сплавы на основе хрома и никеля.
Также существует классификация по способу производства:
- литейные;
- деформируемые.
Жаростойкий сплав, 6 букв, 2 буква «И», сканворд
Слово из 6 букв, первая буква — «Н», вторая буква — «И», третья буква — «Х», четвертая буква — «Р», пятая буква — «О», шестая буква — «М», слово на букву «Н», последняя «М». Если Вы не знаете слово из кроссворда или сканворда, то наш сайт поможет Вам найти самые сложные и незнакомые слова.
Отгадайте загадку:
Кто за птица? Никогда Не строит для себя гнезда, Соседкам яйца оставляет И о птенцах не вспоминает. Показать ответ>>
Кто зимой в трубе гудит? Показать ответ>>
Кто зимой холодной Бродит по лесу злой, голодный? Показать ответ>>
Другие значения этого слова:
- Ni + Cr
- Жаропрочный сплав для электроплиток
- Жаростойкий сплав
- Общее название группы сплавов, состоящих, в зависимости от марки сплава, из 55-78 % никеля, 15-23 % хрома, с добавками марганца, кремния, железа, алюминия
- Сплав для спиралей
- Сплав никеля с хромом
- Сплав никеля с хромом для изготовления нагревательных элементов
- Сплав никеля с хромом, железом и марганцем
- Сплав никеля, железа и хрома, не поддающийся окислению как при обычных, так и при высоких температурах
Случайная загадка:
Что вчера было «завтра», а завтра будет «вчера»?
Показать ответ>>
Случайный анекдот:
Двое подростков обнимаются в машине на переднем сиденье. Дело заходит далеко, и парень шепчет своей подруге: — Не хочешь перебраться на заднее сиденье? — Нет, — отвечает она.
Смущенный парень продолжает в том же духе и, видя, что все идет как надо, повторяет свой вопрос: — Не хочешь ли перебраться на заднее сиденье? — Не хочу. Парень вообще смутился, но виду не подает, продолжает ласки. Через некоторое время, видя, что девушка явно готова на все, он опять спрашивает: — Не хочешь перебраться на заднее сиденье? — Нет. — Но почему? — Я хочу быть здесь, с тобой! Ещё анекдоты>>
Знаете ли Вы?
Мозг. Мозг женщин в 1860 году был равен 1245 граммам и сегодня увеличился до 1270 граммов .
Ещё факты>>
Виды жаропрочной стали
- Ферритная — имеет невысокое содержание хрома (не более 17%). Обладает средними показателями коррозионной стойкости. Плохо обрабатывается.
- Мартенситная — имеет низкое содержание хрома и среднее углерода. Обладает посредственной пластичностью.
- Мартенситно-ферритная — обладает свойствами ферритного и мартенситного металла, из-за чего получила улучшенные характеристики.
- Аустенитная — сталь с низким содержанием углерода, имеет немагнитные свойства, содержат никель. Стойка к коррозии при значительных температурах и деформациям.
Разновидности жаропрочных и жаростойких материалов по структурным критериям
Состояние внутренней структуры металлов определяет тип сталей и сплавов.
Выделяется ряд категорий жаропрочных стальных материалов, исходя из состояний внутренней структуры.
Аустенитный класс
Аустенитный класс формирует внутреннюю структуру благодаря большому процентному содержанию хрома и никеля. Получение стабильного аустенита, гранецентрированной кристаллической решетки железа, предполагает легирование стали никелем. Жаростойкость определяется хромовыми добавками.
Это интересно: Уголок равнополочный ГОСТ 8509 93. Задающий сортамент уголка
Аустенитные сплавы — высоколегированные. Для целей легирования используются Nb (ниобий) и (Ti) титан для увеличения устойчивости к коррозии. Эта характеристика позволяет отнести их к группе стабилизированных. Коррозионностойкие жаропрочные стали с относятся к труднообрабатываемым металлам.
Когда температуры повышаются до значений, близких к 1000 градусам С. и длительно поддерживаются, аустенитная нержавеющая сталь сохраняет стойкость к образованию слоя окалины, сохраняя качество жаростойких материалов.
Часто встречаются на производстве сплавы аустенитного типа, принадлежащие к дисперсионно–твердеющему подклассу. Качественные характеристики могут улучшаться путем добавления различных элементов: карбидных, интерметаллических упрочнителей. Эти элементы обеспечивают деформационно-термическое упрочнение благодаря усилению аустенитной матрицы с помощью дисперсионного твердения.
Карбидообразующие элементы: ванадий-V, ниобий-Nb, вольфрам-W, молибден-Mo.
Интерметаллиды получаются благодаря дополнительным добавкам хрома–Cr, никеля-Ni, и титана–Ti.
Структура аустенитов
Жаропрочные аустенитные различаются по типам структуры. Она может быть
- Гомогенной. Материал с такой структурой не проходит термообработку для упрочнения, в нем мало углерода и большой процент легирующих компонентов. Это обусловливает хорошую стойкость к ползучести. Применяются в температурной среде ниже 500 градусов.
- Гетерогенной. В таком материале, прошедшем термоупрочнение, получаются карбонитридные и интерметаллидные фазы. Это позволяет повысить температуру использования под нагрузками напряжения до 700 градусов..
Материалы с никелевыми и кобальтовыми присадками подвергаются эксплуатационным воздействиям при терморежиме до 900 градусов. Сохраняют стабильность структуры долгое время.
Нихромы, в которых никеля больше 55%, отличаются и жаропрочностью, и качествами жаростойкости.
Тугоплавкие металлы: вольфрам, ниобий, ванадий обеспечивают устойчивость металлов, когда термический режим приближается к 1500 гр. С.
Молибденовые сплавы с дополнительной защитой долгое время сохраняют рабочие свойства в терморежиме 1700 гр.
Марки аустенитного ряда дисперсионно-твердеющие | Маркировка сплавов аустенитного ряда гомогенных |
Х12Н20Т3Р, 4Х12Н8Г8МФБ, 4Х14Н14В2М | 1Х14Н16Б, 1Х14Н18В2Б, Х18Н12Т, Х18Н10Т, Х23Н18, Х25Н20С2, Х25Н16Г7АР |
Из металлов этого подкласса производят турбинные конструкции, клапаны двигателей автотранспорта, арматурных конструкций | Гомогенные виды идут на изготовление трубопрокатной продукции, деталей печей, агрегатов, функционирующих под давлением. |
Х12Н20Т3Р идет на производство турбинных дисков, кольцевых компонентов, крепежа, функционирующих в температурном режиме менее 700 гр. 4Х14Н14В2М участвует в производстве арматуры, крепежа и поковок для долгого срока эксплуатации при термическом режиме 650 градусов | Х25Н20С2 участвует в производстве печей для температурных нагрузок до 1100 градусов Из Х25Н16Г7АР производят различные металлические полуфабрикаты: лист, проволока, готовые детали для функционального использования при 950 гр. при умеренных нагрузках. Х18Н12Т идет на изготовление деталей и компонентов для работы при терморежиме до 600 гр. в агрессивных средах. |
Аустенитно-ферритный класс
Материалы, содержащие смесь аустенитных и ферритных фаз, характеризуются особой жаропрочностью. По своим параметрам они превосходят даже высокохромистые железосодержащие материалы. Объяснение этого явления кроется в особо стабильной матричной структуре. Это предполагает возможность применения при терморежиме 1150 градусов.
Маркировка стали ферритного ряда: Х23Н13, Х20Н14С2 и 0Х20Н14С2 |
Х23Н13 идет на изготовление пирометрических трубок. Х20Н14С2 и 0Х20Н14С2 идут в производство жаропрочных труб, печных конвейеров, емкостей для цементации. |
Мартенситный класс
Методом, который превращает один вид стального материала в другой, является закаливание, за которым следует отпуск. Итог процесса – перестроение кристаллической решетки и повышение твердости. Однако возрастает хрупкость.
Технология отжига проходит при температурах около 1200 градусов на протяжении нескольких часов. Затем материалу дают остыть, и это занимает также несколько часов. Такая процедура приводит к повышению гибкости металла, хотя приходится пожертвовать некоторым уровнем твердости. Если применяется метод двойной закалки, то она проходит в два этапа . Первый предполагает нормализацию твердого раствора материала с нагреванием до 1200 градусов. Второй этап предполагает тот же процесс, но с нагревом до 1000 градусов. Такая технология обеспечивает рост пластичности металла и увеличивает его жаропрочность.
Мартенситы характеризуют такие марки сплавов: Х5, 3Х13Н7С2 , 40Х10С2М , 4Х9С2, 1Х8ВФ. |
Х5 используется в трубном производстве, трубы выдерживают режим эксплуатации до 650 гр. С. 40Х10С2М идет на изготовление клапанов авиадвигателей, двигателей для дизельного автотранспорта, крепежа при температурах до 500 градусов. 3Х13Н7С2 и 4Х9С2 могут подвергаться нагреву порядка 900 гр. С. Это обуславливает их пригодность для производства двигательных клапанов. 1Х8ВФ рассчитана на температурный режим ниже 500 гр. С., но на длительную эксплуатацию под нагрузками. Эта марка подтвердила свою эффективность в изготовлении паровых турбин. |
Перлитный класс
Перлитные жаропрочные стальные материалы относятся к категории низколегированных. Стали содержащие в виде присадок хром и молибден ориентированы на работу при температуре 450-550 гр. С., содержащие, помимо Cr и Mo еще и ванадий, нацелены на рабочий режим при температуре 550-600 гр. С.
Легирование хромом влияет на жаростойкость материалов в сторону повышения этой характеристики, также усиливается сопротивляемость окислительным процессам. Добавки молибдена увеличивают прочностные характеристики при большом нагреве материалов.
Ванадий, объединяясь с углеродом, создает повышение прочностных характеристик стальных материалов карбидами с высокодисперсными качествами.
Технология нормализации металлов улучшает и оптимизирует механические свойства сплавов. Технология закаливания и следующего за ней температурного отпуска выполняет ту же функцию. Получается структурная матрица, в которой присутствует дисперсная феррито карбидная фактура.
К перлитным разновидностям принадлежат марки стали: 12МХ, 15ХМ, 20ХМЛ, 12Х1МФ, 15Х1М1Ф, 20ХМФЛ, 12Х2МФСР |
Из 20ХМЛ производят шестерни, втулки крестовины, цилиндры, другие узлы и детали для работы при 500 гр. С. 12Х1МФ — производство труб пароперегревателей, трубопроводов и коллекторов высокого давления. 15Х1М1Ф идет на производство установок высокого давления, функционирующих при режиме температур до 585 гр. С. |
Ферритный класс
Материалы с ферритной структурой имеют в своем составе от 25 до 33 % хрома. Получаются с помощью методов отжига и термообработки, из-за этого в них возникает мелкозернистая структура. Когда происходит повышение температурных показателей до 850 градусов, увеличивается хрупкость.
Маркировки сталей ферритного ряда: 1Х12СЮ, Х17, 0Х17Т, Х18СЮ, Х25Т и Х28 |
Оправдано использование сталей этого ряда для изготовления разнообразных деталей для машиностроения. 0Х17Т зарекомендовал себя в производстве изделий для работы в окислительных средах, таких как трубы и теплообменники Из Х18СЮ производятся трубы пиролизных установок, аппаратура. Х25Т участвует в производстве сварных конструкций с эксплуатационной температурой до 1100 градусов, труб для перекачивания агрессивных сред, теплообменников. |
Мартенситно-ферритный класс
Этот тип стали имеет в своем составе 10-14% хрома, легируется V, Mo, W.
Марки сплавов этого ряда: Х6СЮ, 1Х13, 1Х11МФ, 1Х12В2МФ, 1Х12ВНМФ, 2Х12ВМБФР |
Х6СЮ применяется в производстве компонентов котельных установок и трубопроводов. 1Х11МФ работает в виде лопаток турбин, из него производят поковки для эксплуатационных температур до 560 гр. С. 1Х12ВНМФ идет на производство лопаток и крепежа турбин, которые подвергаются длительным нагрузкам в температурных пределах до 580 градусов. |
Марки жаростойких и жаропрочных сталей
В зависимости от состояния структуры различают аустенитные, мартенситные, перлитные и мартенситно-ферритные жаропрочные металлы. Жаростойкие сплавы разделяются на ферритные, мартенситные или аустенитно-ферритные виды.
Применение мартенситных сталей. | |
Марки стали | Изделия из жаропрочных сталей |
4Х9С2 | Клапаны автомобильных двигателей, рабочая температура 850–950 ºC. |
1Х12H2ВМФ, Х6СМ, Х5М, 1Х8ВФ, Х5ВФ | Узлы, детали, работающие при температуре до 600 ºC на протяжении 1000–10000 часов. |
Х5 | Трубы, эксплуатируемые при рабочей температуре до 650 ºC. |
1Х8ВФ | Элементы паровых турбин, которые работают при температуре до 500 ºC на протяжении 10000 часов и более. |
Перлитные марки, имеющие хромокремнистый и хромомолибденовый состав жаропрочной стали: Х13Н7С2, Х10С2М, Х6СМ, Х7СМ, Х9С2, Х6С. Хромомолибденовые составы 12МХ, 12ХМ, 15ХМ, 20ХМЛ подходят для использования при 450-550 °С, хромомолибденованадиевые 12Х1МФ, 15Х1М1Ф, 15Х1М1ФЛ – при температуре 550-600 °С. Их применяют при производстве турбин, запорной арматуры, корпусов аппаратов, паропроводов, трубопроводов, котлов.
Ферритная сталь изготавливается путем обжига и термообработки, за счет чего приобретает мелкозернистую структуру. Сюда относят марки Х28, Х18СЮ, 0Х17Т, Х17, Х25Т, 1Х12СЮ. Содержание хрома в таких сплавах 25-33 %. Их применяют на производстве теплообменников, аппаратуры для химических производств (пиролизного оборудования), печного оборудования и прочих конструкций, которые работают длительное время при высокой температуре и не подвержены воздействию серьезных нагрузок. Чем больше хрома в составе, тем выше температура, при которой сталь сохраняет эксплуатационные свойства. Жаростойкая ферритная сталь не обладает высокой прочностью, жаропрочностью, отличается хорошей пластичностью и неплохими технологическими параметрами.
Мартенситно-ферритная сталь содержит 10-14 % хрома, легирующие добавки ванадий, молибден, вольфрам. Материал используется при изготовлении элементов машин, паровых турбин, оборудования АЭС, теплообменников атомных и тепловых ЭС, деталей, предназначенных для длительной эксплуатации при 600 ºC. Марки сталей: 1Х13, Х17, Х25Т, 1Х12В2МФ, Х6СЮ, 2Х12ВМБФР.
Аустенитные стали отличаются широким применением в промышленности. Жаропрочностные и жаростойкие характеристики материала обеспечиваются за счет никеля и хрома, легирующих добавок (титан, ниобий). Такие стали сохраняют технические свойства, стойкие к коррозии при воздействии температуры до 1000 ºC. Сравнительно со сталями ферритного класса, аустенитные сплавы обладают повышенной жаропрочностью, способностью к штамповке, вытяжке, свариванию. Термическая обработка металлов осуществляется путем закалки при 1000–1050 °С.
Применение аустенитных марок. | |
Марки стали | Применение жаропрочных сталей |
08X18Н9Т, 12Х18Н9Т, 20Х25Н20С2, 12Х18Н9 | Выхлопные системы, листовые, сортовые детали, трубы, работающие при невысокой нагрузке и температуре до 600–800 °С. |
36Х18Н25С2 | Печные контейнеры, арматура, эксплуатируемые при температуре до 1100 °С. |
Х12Н20Т3Р, 4Х12Н8Г8МФБ | Клапаны двигателей, детали турбин. |
Аустенитно-ферритные стали отличаются повышенной жаропрочностью по сравнению с обычными высокохромистыми сплавами. Такие металлы применяются при изготовлении ненагруженных изделий, рабочая температура 1150 ºC. Из марки Х23Н13 изготавливают пирометрические трубки, из марки Х20Н14С2, 0Х20Н14С2 – печные конвейеры, резервуары для цементации, труб
Альфа-Сталь — это:
- Огромный ассортимент всех видов проката из наличия на складе.
- Профессиональная логистика: — минимальное время доставки заказа – 1 час; — минимальная стоимость доставки – 800 руб. (сборный груз).
- Профессиональные консультации по любой продукции и услуге.
Ответим на вопросы и примем заказ: +7 (495) 725-66-37
Электронная почта: [email protected]
Заказать металл, получить КП
Наши преимущества
Заготовки Отрежем нужный размер от листа, круга, трубы и продадим без остатка
. Используем для заготовок черный, цветной, нержавеющий металлопрокат.
Отсрочка платежа Постоянным клиентам отсрочка платежа до 5 000 000 руб. на срок до 31 дня.
Надежно Возврат денег или товара по любой причине, быстро и без проблем.
Аккредитованный поставщик госкорпорации «Росатом» Наш металл постоянно проходят проверку на хим. состав — все технические характеристики по самым редким и сложным сталям полностью соответствуют заявленным.
Оптом и в розницу От прутка и килограмма до десятка вагонов.
Рекомендации Посмотрите отзывы наших клиентов
Склад работает круглосуточно Загрузим машину и выдадим документы в любое время дня и ночи.
Быстрая и недорогая доставка Загружаем машины на следующий день. Отпускаем по платежке. Низкие цены: от 2500 руб. с НДС за отдельную машину.
+ Еще преимущества
Сферы применения
Эксплуатируются различные жаростойкие марки стали по разному, во многом их предназначение определяют легирующие компоненты:
- AISI 309 подходит для производства фрагментов печного и конвейерного оборудования;
- AISI 310 применяется для производства транспортеров печей, ДВС и других камер сжигания, турбин, дверей и моторов;
- AISI 310S подходит для изготовления оборудования, используемого для транспортировки газов при высокой температуре – это могут быть системы отвода выхлопных газов, газопроводы или турбины;
- AISI 314 используется при производстве печей за счёт максимальных тугоплавких свойств.
Марки нержавеющей стали для изготовления дымоходов
При покупке модульных дымоходных систем необходимо узнать, из какой стали они изготовлены. В продаже можно встретить дымоходы, которые примерно в полтора раза дешевле, чем остальные изделия этой категории. При их производстве используется сталь AISI 201 (12Х15Г9НД). По международным стандартам, необходимо применять сталь марки AISI 321 (08Х18Н12Т), стоимость которой примерно в 2 раза превышает стоимость AISI 201. Визуально отличить AISI 201 от AISI 321 невозможно, к тому же оба сплава немагнитны. Различить их можно только путем проведения химического анализа.
Различия по химическому составу
Марка | С | Mn | P | S | Si | Cr | Ni | Cu | Ti |
AISI 201 | До 0,15% | 7-9,5 | До 0,1% | До 0,03% | До 1,0% | 13-18 | 0,3-3,0 | 0,5-2,5 | — |
AISI 321 | До 0,08% | До 2,0 | До 0,05% | До 0,03% | До 1,0% | 17-19 | 9,0-12,0 | — | Min 0,5% |
Сталь марки AISI 201 имеет невысокие антикоррозионные характеристики, неустойчивость структуры, риск появления трещин при вытяжке. Ее применение приведет к скорому выходу дымохода из строя из-за быстро развивающейся коррозии. В основном эта сталь распространена в Китае и Индии.
Известные зарубежные и добросовестные российские производители, помимо стали AISI 321, используют высоколегированные сплавы, стабилизированные Ti. Они отличаются кислото- и жаростойкостью. Использование для газоотводящих труб более дешевых сталей (AISI 409, AISI 430), не отвечающих требованиям по кислотостойкости, приводит к их выходу из строя вскоре после начала отопительного сезона.
Нержавеющие стали для пищевой индустрии
Коррозионностойкие стали незаменимы для отраслей промышленности, производящих оборудование, инструменты и посуду, предназначенные для контакта с пищевой продукцией. Их преимущества:
- Сопротивление различным видам коррозии – химической и электрохимической. В каждом конкретном случае необходимо подбирать марки, устойчивые к средам, с которыми они будут соприкасаться во время эксплуатации. Это – нормальные атмосферные условия, вода, соленая вода, кислые, щелочные, хлористые растворы.
- Хорошая обрабатываемость. Современные инструменты позволяют сваривать, резать, формовать и обрабатывать на токарных, фрезерных и сверлильных станках коррозионностойкие сплавы так же, как и «черные» стали.
- Соответствие санитарно-гигиеническим стандартам. Благодаря различным способам обработки – шлифованию, полировке до зеркального блеска – получают поверхность практически без пор и трещин, в которые могут проникать грязь и патогенные микроорганизмы.
- Хорошие механические характеристики. Благодаря ним, можно изготавливать изделия и конструкции меньшей толщины и массы без ухудшения технических свойств. Аустенитные стали более устойчивы к низким температурам, по сравнению с металлами общего назначения.
- Эстетика. Электрополировка, сатинирование и другие способы поверхностной обработки обеспечивают стильный вид продукции из «нержавейки».
Таблица свойств и областей применения нержавеющих сталей пищевых марок
Марка стали по ГОСТу | AISI | Характеристики | Области применения |
304 | 08Х18Н10 | Хорошо сваривается, поддается электрополировке, сохраняет высокую прочность при нормальных и пониженных температурах, проявляет стойкость к интеркристаллитной коррозии | Оборудование, инструмент, технологические трубопроводы предприятий пищевой, нефтехимической индустрии, фармацевтики и медицины, для посуды, предназначенной для высокотемпературной обработки продуктов, не используется |
316 | 03Х17Н14М2 | Присутствие молибдена повышает технические характеристики сплава при высоких температурах | Установки, технологическое оборудование, емкости пищевой, химической промышленности |
321 | 12Х18Н10Т | Хорошая свариваемость, сохранение рабочих характеристик при температурах до +800°C | Оборудование для химической и нефтеперерабатывающей индустрии |
409 | 08Х13 | Характеристики удовлетворительные | Посуда и столовые приборы |
410 | 12Х13 | Жаропрочность, устойчивость только к средам слабой агрессивности | Оборудование для виноделия, емкости для спирта |
420 | 20Х13-40Х13 | Универсальность, пластичность, износостойкость, повышенная устойчивость к коррозии | Посуда, кухонные мойки |
430 | 08Х17 | Прочность, теплопроводность, хорошая обрабатываемость, устойчивость к коррозии | Посуда для термической обработки продуктов, в том числе паровой |
439 | 08Х13 | Возможность применения в различных эксплуатационных условиях | Сплав массового применения – производство холодильников, моек, стиральных машин |
Таблица сталей нержавеющих марок, применяемых в пищевой индустрии
Отрасль | Марки |
Молочные продукты – стерилизация и хранение продукта, сыроварение, цистерны для перевозки, производство мороженого и порошкового молока | Стали аустенитного класса – 304, 316, 321 |
Консервирование фруктов, производство соков. В таких отраслях сталь контактирует со средой, содержащей двуоксид серы | Марки с содержанием молибдена |
Приготовление супов и соусов (это агрессивные смеси с повышенной кислотностью, содержащие хлориды) | Молибденсодержащие марки |
Хлебопечение, требования – гигиеничные, гладкие поверхности столов и смесительного оборудования | Аустенитные стали – 304, 316, 321 |
Какая марка стали лучше для банной печки
Непосредственное воздействие огня приводит к прогоранию стали. Конечно, можно попросту использовать металл толщиной 10 мм и более, но тогда придется подолгу протапливать парную, тратить большое количество топлива для прогрева. По причине использования толстостенных стальных листов, долговечная печь станет экономически невыгодной.
Задача, стоящая перед мастером – сделать конструкцию достаточно прочную, чтобы предотвратить деформацию, прогорание и одновременно имеющую хорошую теплопроводимость. В заводских условиях, для изготовления банных печей используется металл с высокой степенью жаропрочности.
Легированная сталь отличается от конструкционной стали следующими характеристиками:
- Устойчивость к влаге – легированная сталь, применяемая при изготовлении печей для бани, нержавеющая. Отсутствует склонность к коррозии даже при интенсивном нагреве. Отечественная марка жаропрочной высоколегированной нержавеющей стали 08Х17Т. В некоторых источниках указывается на практически полную идентичность характеристик жаростойких сталей данного типа. Конструкционное железо не отличается коррозионной стойкостью, что приходится учитывать при расчете толщины стенок топки.
- Время эксплуатации – срок службы печей из конструкционной стали, 3-4 года. AISI 430 приходит в негодность за 5-8 лет.
- Возможность ремонтных работ – марки жаростойких сталей для изготовления дровяных банных печей, AISI 430 и 08Х17Т, имеют низкое содержание углерода, что делает возможным проведение сварочных работ. Конструкционное железо содержит соединения серы и фосфора, предающие ему хрупкость и ломкость.
- Жаростойкость – марки жаропрочной стали для печи в баню, AISI 430 и 08Х17Т, выдерживают нагрев до 850°С без изменения структуры металла и его кристаллической решетки. При поднятии температуры до 600 °С, предел прочности остается в районе 145 Мпа. Образование окалины происходит только при разогреве до 8500°С. Металл в банной печи при интенсивной топке нагревается до температуры 450-550°С. У конструкционного материала, параметры жаростойкости меньше.
Расшифровка марок
Маркировка легированных сталей состоит из букв и цифр. В начале ставится двузначное число, которое характеризует количество углерода в сотых долях %. Далее следуют буквы русского алфавита, обозначающие определенный элемент:
- Х – хром;
- Н – никель,
- Т – титан;
- В – вольфрам;
- Г – марганец;
- М – молибден;
- Д – медь.
После буквенного обозначения легирующего элемента в расшифровке идет число, обозначающее его содержание в нержавеющей стали, округленное до целого процента. Если такой цифры нет, то добавка в сплаве находится в пределах – 1-1,5 %.
Особенности материалов с жаропрочными свойствами
Жаропрочные стали и сплавы, как уже говорилось выше, способны успешно эксплуатироваться в условиях постоянного воздействия высоких температур, при этом не проявляя склонности к ползучести. Суть этого негативного процесса, которому подвержены стали обычных марок и другие металлы, заключается в том, что материал, на который воздействуют неизменная температура и постоянная нагрузка, начинает медленно деформироваться, или ползти.
Ползучесть, которой и стараются избежать, создавая жаропрочные стали и металлы другого типа, бывает двух видов:
- длительная;
- кратковременная.
Для определения ползучести сплавов в иследовательских центрах используют комплекс испытательных машин
Чтобы определить параметры кратковременной ползучести, материалы подвергают специальным испытаниям, для чего их помещают в печь, нагретую до определенной температуры, и прикладывают к ним растягивающую нагрузку. Такое испытание проводится в течение ограниченного промежутка времени.
Проверить материал на его склонность к длительной ползучести и определить такой важный параметр, как предел ползучести, за короткий промежуток времени не получится. Для этого испытуемое изделие, помещенное в печь, необходимо подвергать длительной нагрузке. Важность такого показателя, как предел ползучести материала, заключается в том, что он характеризует наибольшее напряжение, которое приводит к разрушению разогретого изделия после воздействия в течение определенного промежутка времени.
Сплавы, основанные на добавлении никеля с железом
Никелевые сплавы (56% никеля) или никеле-железные стали(65%) считаются жаропрочными и имеют качественные жаростойкие качества. Основным элементом для легирования сталей подобной группы признается только хром, содержание которого равно 14-23%.
Что касается стойкости и стабильности, которые сохраняются даже при усиленных нагрузках и повышенной температуры, то обязательным элементом для смешивания металла — никель. Самые востребованные из ХН60В, ХН67ВМТЮ, ХН70, ХН70МВТЮБ, ХН77ТЮ, ХН78Т, ХН78Т, ХН78МТЮ. Часть сплавов этих марок считаются жаропрочными, а другие – жаростойкими.
Базой мартенситного основания сплава считается перлит, меняющей состояние продукта, если количество хрома в составе увеличить. Перлитными считаются такие единицы жароустойчивых и жаростойких сталей, имеющих отношение к хромомолибденовым и хромокремнистым: Х6С, Х6СМ, Х7СМ, Х9С2, Х10С2М и Х13Н7С2. Для получения материал с сорбитной структурой, отличающегося особой твердостью, их вначале укрепляют при 950–1100°, а после подвергают отпуску.
Металлические сплавы с ферритной структурой, имеющие отношение к жаростойкой стали для котлов, заключают в собственном хим. составе от 26 до 32% хрома, определяющем свойства. Для придания сталям тонкодисперсную структуру, фабрикаты подвергают обжиганию. Существуют такие марки сталей данной подгруппы 1Х12СЮ, Х17, 0Х17Т, Х18СЮ, Х25Т и Х28. Если эти стали нагреваются до 860° и выше, происходит быстрое укрепление зерна во внутренней структурной формуле, при этом очень сильно повышается ломкость и хрупкость металла, при которой он может быстро прийти в негодность.
жаростойкий сплав 6 букв, на букву А
Авиаль | Сплав на основе алюминия, используемый в авиации 6 букв |
Авиаль | Сплав на основе алюминия 6 букв |
Авиаль | Сплав, применяемый в самолетостроении 6 букв |
Авиаль | Легкий сплав для крылатых лайнеров 6 букв |
Алудур | Металлический сплав 6 букв |
Алудур | Сплав металлов 6 букв |
Авиаль | Лёгкий сплав 6 букв |
Авиаль | Сплав с алюминием 6 букв |
Авиаль | Высокопластичный алюминиевый сплав 6 букв |
Адванс | (англ. «продвижение вперед») медно-никелевый сплав, употребляемый в производстве электротехнических приборов 6 букв |
Оптимальная толщина металла для печи в баню
При определении толщины металла, учитывают две основные характеристики, влияющие на рабочие параметры банной печи:
- Прогорание стали – если для топки использовать тонкостенный лист обычного металла, спустя буквально полгода топки, придется ремонтировать печь. Обычная сталь толщиной 4 мм, обеспечит быстрый прогрев парной, но прослужит недолго. По этой причине, производители делают топочную камеру из AISI 430, жаростойкой хромистой нержавеющей стали толщиной 4-6 мм.
- Теплопроводность – температура нагрева печи напрямую зависит от толщины стенок топки. Кажется, что проще было сделать топочную камеру из металла 10 мм и больше, и так предотвратить прогорание, но такой подход нецелесообразен по нескольким причинам. Чем толще металл, тем больше требуется тепловой энергии и времени, чтобы прогреть его и поддерживать необходимую температуру. Печное оборудование становится экономически невыгодным. Оптимальная толщина металла у банной печи, должна быть 6-8 мм.
Минимальная толщина стали в топочной камере 4 мм, допустима только при условии применения AISI 430 и 08Х17Т. В других случаях, нужна толщина металла не менее 6 мм. Большинство мастеров рекомендуют при самостоятельном изготовлении печи, использовать конструкционную сталь толщиной 8 мм.
Какими электродами надо варить банную печь
Чтобы сварить печь, потребуются электроды, выбираемые, в зависимости от используемой при производстве стали. Нержавейку варят методом аргонодуговой сварки. Подойдут электроды марки ЦЛ 11 и Д4.
После проведения сварочных работ, обязательно удаление окалин и протравка. Так можно избежать коррозии в месте сварного шва.
Электроды для сварки банных печей, изготовленных из конструкционной стали НИАТ-5, ЭА-112/15, ЭА-981/15 и ЭА-981/15. Толщина выбирается, в зависимости от плотности металла и температуры его прогрева.
Изготовить печь для бани своими руками, при наличии специальных навыков, грамотном выборе комплектующих и расходных материалов, не сложно.
Жаростойкий сплав, 6 букв, 6 буква «М», сканворд
Слово из 6 букв, первая буква — «Н», вторая буква — «И», третья буква — «Х», четвертая буква — «Р», пятая буква — «О», шестая буква — «М», слово на букву «Н», последняя «М». Если Вы не знаете слово из кроссворда или сканворда, то наш сайт поможет Вам найти самые сложные и незнакомые слова.
Отгадайте загадку:
Что кроме отелей может быть трёхзвёздочным, пятизвёздочным? Показать ответ>>
Что круглое и без дна? Показать ответ>>
Что меньше рта муравья? Показать ответ>>
Другие значения этого слова:
- Ni + Cr
- Жаропрочный сплав для электроплиток
- Жаростойкий сплав
- Общее название группы сплавов, состоящих, в зависимости от марки сплава, из 55-78 % никеля, 15-23 % хрома, с добавками марганца, кремния, железа, алюминия
- Сплав для спиралей
- Сплав никеля с хромом
- Сплав никеля с хромом для изготовления нагревательных элементов
- Сплав никеля с хромом, железом и марганцем
- Сплав никеля, железа и хрома, не поддающийся окислению как при обычных, так и при высоких температурах
Случайная загадка:
Перекрёсток. Светофор. Камаз, повозка и мотоциклист стоят и ждут зелёного света. Загорелся жёлтый, Камаз газонул. Лошадь испугалась и укусила мотоциклисту ухо. Вроде ДТП, но кто нарушил правила?
Показать ответ>>
Случайный анекдот:
— Золушка? А, это та девочка, которая на новогоднем балу хрустальные бокалы на ноги натянула…
Ещё анекдоты>>
Знаете ли Вы?
Булочка с маком не доставит вам тех радостных минут умиротворенной эйфории, которые получают курильщики опиума, проблемы с наркоконтролем могут возникнуть. Если через некоторое время, после того, как человек съест две булочки с маком, взять у него кровь на анализ, тест на опиаты скорее всего будет положительным.
Ещё факты>>
Самые востребованные жаростойкие сплавы
Аустенитные жаростойкие сплавы стали самыми востребованными материалами в данный момент в этом сегменте сталеварения. Их структура создаётся при помощи входящего в состав никеля, а жаростойкие качества обеспечиваются наличием хрома. Такие аустенитные марки хорошо противостоят появлению окалины при температурах, не превышающих тысячи градусов.
При изготовлении этого сплава используют два вида уплотнителя: интерметаллический или карбидный. Именно эти уплотнители обеспечивают аустенитную сталь особыми свойствами, которые так востребованы в различных современных производствах.
Самые востребованные и актуальные сплавы делятся на две группы:
- дисперсионно-твердеющие (марки Х12Н20Т3Р, 0Х14Н28В3Т3ЮР, 4Х14Н14В2М, 4Х12Н8Г8МФБ – такая сталь самый подходящий материал для изготовления деталей турбин и клапанов двигателей);
- гомогенные (марки Х25Н20C2, 1Х14Н16Б, Х23Н18, Х25Н16Г7АР, Х18Н10T, 1Х14Н18В2Б, Х18Н12T – данные марки используются для производства труб и арматуры, которые будут работать при больших нагрузках).
Аустенитно-ферритные стали благодаря своему сплаву со стабильным строением обнаруживают довольно-таки высокую жаропрочность. Подобные марки из-за своей хрупкости нельзя использовать для производства нагруженных деталей, но эти сплавы отлично себя показывают при температурах, доходящих до 1150°С.
жаростойкий сплав 6 букв, на букву Н
Нихром | Жаростойкий сплав 6 букв |
Нихром | Общее название группы сплавов, состоящих, в зависимости от марки сплава, из 55-78 % никеля, 15-23 % хрома, с добавками марганца, кремния, железа, алюминия 6 букв |
Нихром | Сплав никеля с хромом, железом и марганцем 6 букв |
Нихром | Сплав никеля, железа и хрома, не поддающийся окислению как при обычных, так и при высоких температурах 6 букв |
Нихром | Сплав никеля с хромом для изготовления нагревательных элементов 6 букв |
Нихром | Жаропрочный сплав для электроплиток 6 букв |
Нихром | Металлический сплав 6 букв |
Нихром | Сплав никеля с хромом 6 букв |
Нихром | Сплав для спиралей 6 букв |
Никель | Металл, компонент монетных сплавов 6 букв |