Термическая резка проката и области её применения


Резка металла — это процесс разделения металлического листа или трубы на несколько частей ручным, механическим, термическим методом. Череповецкий завод металлоконструкций использует данный процесс при производстве различных изделий, благодаря чему специалисты могут подробно объяснить все особенности. Ответ на вопрос о том, чем резать металл, в условиях современного развития промышленных технологий оказывается достаточно многогранным. Так как режут металл также в бытовых и ремонтных целях, вопрос оказывается актуальным для многих людей.

Способы резки

Существует несколько способов разделения материала. Технология зависит от оборудования, применяемого в процессе работы. Выделяют следующие виды резки металла:

  • ручную;
  • гидроабразивную;
  • термическую.

Ручная резка металла

Ручное резание металла не является высокоэффективным и в промышленных масштабах не используется. При ручной резке используются следующие инструменты:

  • ножницы;
  • ножовка;
  • лобзик;
  • болгарка.

Гидроабразивная резка металла

Гидроабразивный способ резки основан на воздействии струи воды, смешанной с абразивными частицами, на обрабатываемую заготовку. Давление подаваемой жидкости составляет 5000 атм. К преимуществу такой резки металла относится возможность получения разнообразных линий. Обработке подвергаются сплавы определенной марки с небольшой толщиной листа.

Термическая резка металла

Резание металлов горячим способом основано на отсутствии контакта между инструментом и заготовкой. Горячая струя расплавляет и разделяет материал в нужном месте.

К видам термической резки относятся:

  • газокислородная;
  • лазерная;
  • плазменная.

Газокислородная резка

Газокислородная резка состоит из 2 этапов:

  • В место реза направляется струя пламени, которая выходит из резака. В качестве горючего материала используется ацетилен.
  • После разогрева идет подача кислорода, который прорезает размягченную металлическую поверхность. Параллельно удаляются окислы.

В процессе работы расстояние от нижней точки резака до поверхности изделия должно оставаться постоянным. От этого зависит качество реза.

Для этой цели используются лазерные резаки. Процесс основан на подаче лазерного луча в точку поверхности. Происходит фокусирование тепловой энергии. Ведется прогрев участка, расплавление материала и последующее его испарение. При перемещении луч разрезает поверхность.

К недостаткам способа относится возможность работы с изделиями низкой теплопроводности и небольшой толщины.


Лазерная резка металла

Плазменная

В качестве оборудования для плазменной резки используется плазматрон. Через имеющееся в нем сопло под высоким давлением выходит кислород. Его температура составляет до 20 тыс. градусов. Ширина пучка 3 мм. Происходит нагрев участка поверхности, его частичное выгорание и выдувание расплава.

К преимуществу метода относится высокая скорость реза и возможность работать с заготовками до 150 мм толщины.

Механическая резка металла

Механическая резка металла осуществляется с помощью воздействия специальной стали с высокой степенью закалки. За счет большой твердости инструмент разрезает изделие.

При резке используются такие виды оборудования:

  • ленточная пила;
  • гильотина;
  • дисковый станок.

Резка ленточной пилой

Ленточная пила представляет собой полотно, которое закрепляется в специальном оборудовании. Материал инструмента такой же, как и у ручного изделия. На одной стороне расположены зубцы. В процессе работы двигателя станка идет вращение шкивов, благодаря которому происходит непрерывное движение ленты.

В процессе работы наблюдается небольшой отход, потому что ширина полотна составляет 1,5 мм. Возможна резка как листового металла, так и круглых заготовок.

Ударная резка металла на гильотине

Гильотинная резка металла используется для подготовки заготовок из листовой стали при штамповочных операциях. Разрезаемое полотно располагается на горизонтальной поверхности, подается до упора и разрезается гильотинными ножницами по всей ширине одним ударом.

Важно то, что ножи прикасаются к листу не по всей длине поверхности. Верхний инструмент располагается под углом. Соприкосновение с металлом идет в 1 точке, которая перемещается по всей длине реза. Процесс напоминает работу обыкновенных ножниц.

Резка на дисковом станке

В качестве рабочего инструмента используется диск. По его наружной поверхности располагаются зубья. Сверху стоит защитный кожух. В качестве привода используется электродвигатель, который приводит во вращение диск. Получается срез высокого качества.

По такому же принципу устроены труборезы, которыми разрезаются трубы. В процессе работы идет постоянный поворот заготовки на 360 градусов. Есть возможность делать срезы под разными углами.

Это интересно: Притирка и доводка – точная подгонка ответственных деталей

Коротко о промышленных видах резки металла

Сегодня чаще всего используются технологии, отличающиеся высокой скоростью изготовления деталей и наивысшей точностью работы. Крупные металлообрабатывающие предприятия применяют следующие виды резки:

  • газовая;
  • плазменная;
  • лазерная;
  • гидроабразивная;
  • механическая.

Рекомендуем статьи по металлообработке

  • Марки сталей: классификация и расшифровка
  • Марки алюминия и области их применения
  • Дефекты металлический изделий: причины и методика поиска

Газовая резка металла

– это воздействие на материал струи кислородно-пропановой смеси, температура которой намного превышает точку плавления металла. Данный вид резки схож с электродной резкой и отличается невысокой точностью реза. Операцию можно производить в различных условиях без использования сложного оборудования, в отличие от сварки, для которой необходимо наличие электрической сети.

Плазменная резка

производится путем действия на металлический лист струи плазмы температурой от +5000 до +30 000 °С. Струя разгоняется электрическим полем до скорости порядка 1500 м/с, что достаточно для разрезания металлического листа толщиной до 20 см. В результате воздействия раскаленной плазмы получается достаточно ровный и гладкий рез, не нуждающийся в последующей обработке.

На сегодняшний день этот вид резки металла является одним из самых быстрых и точных. Материал вокруг зоны реза не перегревается, его структура не изменяется. Таким способом обрабатывают в основном диэлектрики и листы электропроводящих металлов различной степени твердости.

Лазерная резка

по точности сравнима с плазменной. Вместо плазмы здесь используется луч лазера, плавящий металлический лист в зоне реза. Благодаря высокоточной фокусировке и высокой мощности лазерного луча, металл не только плавится, но и моментально испаряется, оставляя линию реза чистой и гладкой. При обработке листа толщиной более 15 мм требуется дополнительный обдув линии реза инертным газом либо охлаждение водой. Лазерная резка обычно используется для производства деталей сложной формы из листов относительно небольшой толщины (до 20 мм). В качестве заготовок используют сталь и ее сплавы, различные цветные металлы. Основное преимущество лазерной обработки заключается в способности обрабатывать очень тонкие и хрупкие виды материалов.

Гидроабразивная резка

отличается от остальных способов тем, что воздействует на материал механически, а не термически. Рабочим органом здесь выступает смесь воды с абразивным веществом, которая подается под сверхвысоким давлением. Ширина реза при таком способе составляет от 0,5 до 1,5 мм.

Для данного способа можно использовать металлические листы толщиной до 30 см. Характерно, что температура в зоне реза не превышает +90 °С. Поэтому полностью исключены структурные изменения металла в данной зоне, связанные с воздействием высоких температур. Также отсутствуют вредные для человека испарения и выделения.

Такой тип обработки с использованием станков с ЧПУ позволяет резать пачки из нескольких листов и многократно увеличить тем самым производительность. Серьезным недостатком этого способа является подверженность металлической заготовки коррозии.

Обработка металла холодным и горячим приемами

Резка металла осуществляется холодным (механическим) и горячим приемами. Первый характеризуется механическим воздействием на обрабатываемое изделие. Значение имеет твердость режущего инструмента. Резка осуществляется инструментом, значительно превосходящим по твердости обрабатываемую деталь. При данном способе применяются инструменты:

  • циркулярная пила;
  • болгарка;
  • гильотина;
  • ленточнопильный станок.

Горячая резка деталей подразумевает термическое воздействие на них. Они расплавляются в нужном месте, а остатки расплава удаляются газом. Горячий способом включает в себя виды резки:

  • газокислородную;
  • лазерную;
  • плазменную.

Не всегда холодная металлообработка позволяет добиться необходимой чистоты конечного изделия. Такая проблема возникает при кислородной и воздушно-дуговой резке. Указанные методы применяются только в качестве подготовительных работ.

Схемы воздушно-дуговой резки

Термическая резка как вид обработки

Термическая резка проката – это вид металлообработки, который заключается в разделении заготовки (удалении части материала – поверхностная строжка) на части путём плавления по заданной траектории (линии) разделения.

Термическая резка, кроме непосредственного разделения заготовки на отдельные части, также применяется для раскроя заготовки, совмещённого с манипуляциями по подготовке кромок детали к свариванию или вырезанию, а также для создания отверстий и размещения арматуры, выполнения других необходимых и возможных действий. Выделяют такие виды термической резки:

  • кислородная (газовая) – основана на использовании свойств окисления металла кислородной струёй после нагрева участка заготовки сгорающими горючими газами (ацетиленом, пропан-бутановой смесью, метаном), преимущественно используется при работе с углеродистыми сталями;
  • кислородно-флюсовая – основана на подаче и сгорании порошкового реагента на локальном участке заготовки, испытывающем направленное тепловой действие, преимущественно используется при работе с нержавеющими сталями и листами металла большой толщины;
  • плазменная (плазменно-дуговая) – основана на использовании электрической энергии для нагрева направленной струи горючего газа до температуры 4000-5000 С0, может использоваться со всеми металлами и сплавами независимо от формы;
  • дуговая и воздушно-дуговая, которые основаны на использовании электрической энергии для плавления локального участка заготовки.

Поверхностная строжка, выполняемая воздушно-дуговым способом, является наиболее производительным и эффективным методом обработки, который основан на плавлении металла под действием высокой температуры, генерируемой электродом на локальном участке поверхности заготовки. Этот метод часто применяют для удаления дефектных соединений, прорезки отверстий, удаления прихватов (скоб или планок), прорезки корня шва и сварного соединения.

Условия кислородной резки

Основные условия кислородной резки:

  • температура плавления выше температуры воспламенения материала в кислороде (металл должен гореть в твердом состоянии, тогда срез получится ровным, его поверхность — гладкой, продукты горения легко удалятся струей кислорода);
  • температура плавления шлаков ниже температуры горения металла (жидкотекучие шлаки легко удаляются со среза);
  • выделяемого тепла должно хватать для поддержания горения;
  • уровень теплопроводности металла не должен быть высоким (поступающее тепло от места рассекания материала отводится, что препятствует процессу резки);
  • окислы, возникающие при резке, не должны быть чересчур вязкими (например, наличие хрома и кремния в составе металла приводит к образованию плохо выдуваемого шлака и затруднению технологического процесса).

Перечисленным условиям кислородной резки отвечают нелегированные и низколегированные стали. Алюминий, медь и серый чугун этим критериям не соответствуют.

Ленточно-пильная резка

Редкая выставка по металлообработке обходится без показа ленточно-пильного станка новой разработки. Такая популярность обусловлена невысокой стоимостью оборудования, простотой в обслуживании и приемлемой производительностью. В качестве режущего инструмента используется ленточная пила, натянутая на шкивах.

Средняя скорость резки ленточно-пильного станка (ЛПС) превышает 100 мм/мин. Современные модели оснащаются электроникой и широким спектром дополнительного оборудования, которое позволяет легко приспособить станок к технологической линии производства.

При резке на ЛПС обеспечивается точное соответствие заданным параметрам, а место распила практически не нуждается в дополнительной обработке (за исключением производства высокоточных изделий или изделий с гладкой поверхностью). Станок неприхотлив к виду обрабатываемого материала – режет абсолютно все, а ширина реза составляет всего 1,5 мм.

Если при определении скорости резания и подачи нет возможности воспользоваться рекомендациями производителя, то выяснить оптимальные значения можно по стружке: толстая с голубым отливом стружка – показатель слишком высокой скорости подачи, пылеобразная стружка – слишком низкой. При оптимальном режиме стружка слабо вьющаяся.

Одно из важнейших условий при работе на ленточно-пильных автоматах – точный выбор шага зубьев режущего полотна. Подобрать шаг полотна, который соответствует сечению распиливаемого профиля, помогут специальные таблицы. Не меньшее значение имеют скорость подачи и скорость резки.

Одно из главных преимуществ ЛПС – возможность резки под углом. Однако, как и в предыдущем случае, на ЛПС невозможно получить фигурный рез, а размеры заготовок ограничены возможностями станка.

Виды механизированных способов резки и рубки металлов

Для механического раскроя заготовок используют всевозможные резаки, пилы, абразивные круги, прессы. Механическими способами режут, например, газо- и нефтепроводы, а также любые трубопроводы для перекачки огнеопасных материалов. Технология безогневого раскроя металла пользуется популярностью как в промышленности, так и в бытовых условиях.

Абразивные отрезные круги могут использоваться и в ручном инструменте, и в стационарном. В процессе резания металлической детали вращающимся абразивным кругом из-за сильного трения происходит быстрое нагревание и выгорание металла в зоне воздействия. При этом ширина реза невелика и не превышает 2 мм. Разрезание осуществляется с высокой скоростью и точностью. Удобно использовать данное оборудование в бытовом строительстве, в ремонте и при монтаже водопроводов.

Для механического раскроя металлических листов, помимо резки, широко используют также рубку, при которой к горизонтально расположенному листу прижимается нож, и гидравлическим или пневматическим усилием заготовка разрубается в месте соприкосновения. Работа такого пресса основана на принципе обыкновенных ножниц, когда два лезвия взаимно скользят мимо друг друга. Для создания усилия, помимо пневматики и гидравлики, используются также эксцентриковые механизмы.

Пневматические или гидравлические ножницы называются гильотинами, при достаточной мощности они способны разрезать прочные и толстые листы из металлических сплавов. Однако к хрупким и непластичным материалам этот метод неприменим, для их раскроя лучше использовать лазерную, плазменную и другие виды обработки. Гильотины же могут оснащаться программным обеспечением, способным повысить скорость и точность выполняемых операций. В этом заключается преимущество использования данного оборудования.

Раскрой профлиста может производиться мобильными сабельными гильотинами, не требующими наличия электросети и работающими исключительно за счет мускульной силы человека. Профлист, как правило, покрыт оцинковкой или полимерным материалом, поэтому его не следует обрабатывать термическим способом и резать с использованием болгарки. Происходящее при этом локальное разрушение покрытия создает очаги коррозии, которые достаточно трудно устранить.

Металлочерепицу можно подвергать только механической обработке. В продольном направлении профиль режут роликовым резаком либо ножницами по металлу. Для резки в поперечном или диагональном направлениях следует использовать специальные электрические ножницы с соответствующими насадками.

Виды металлов для кислородной резки

Металлы в разной степени подходят для кислородной резки. Как уже было отмечено, лучше всего таким способом рассекаются низкоуглеродистые стали, в которых содержание углерода не превышает 0,3 %. Если уровень этого вещества более 0,7 %, то процесс идет тяжело. Высокоуглеродистые заготовки можно распилить только с помощью кислородно-флюсовой резки. Флюсы — специальные порошкообразные добавки, подаваемые вместе с газом. Их задача состоит в превращении шлаков из тугоплавких в жидкотекучие.

Высоколегированные стали также режутся с флюсами. Алюминий и сплавы алюминия кислородную резку не приемлют. Для них лучше использовать плазменно-дуговой метод.

Рисунок 2 — Кислородная резка

Латунь, медь, бронза режутся только с флюсами. Известный компонент флюсовой смеси — железный порошок (ПЖ) с частицами 0,07–0,16 мм. Для рассекания нержавейки к нему добавляют алюминиевый порошок (А1IB). Также активно применяются ферросилиция и алюминиево­магниевый состав.

Дополнительные условия кислородной резки при использовании флюсов:

  • повышение на 20 % мощности подогревающего пламени;
  • согласование скорости резки с количеством флюса;
  • увеличенное расстояние между мундштуком и металлом.

Это интересно: Хромирование пластика в домашних условиях: технология и советы

Виды ножниц для резки металла

В быту для работы с металлом чаще всего используются ножовка по металлу и кровельные ножницы. Нужно учитывать, что ручная резка ножовкой занимает немало времени и тратит много сил.

Ножницы по металлу обеспечивают гораздо более быстрый раскрой. Рассмотрим основные виды ножниц.

1. Ручные ножницы.

Этот вид используется только для раскроя тонких листов металла. В этом случае можно обеспечить достаточно быстрый и точный рез вдоль намеченной линии. В свою очередь, ручные ножницы делят на следующие подвиды:

  • силовые;
  • рычажные;
  • пальцевые;
  • стуловые;
  • для вырезания криволинейных контуров.

2. Шлицевые ножницы.

Данный вид ножниц может использоваться как для прямой, так и для криволинейной резки. Они обеспечивают качественный раскрой локальных участков металлических листов. Инструмент приводится в движение электродвигателем.

3. Гильотинные ножницы.

Преимущества использования данного вида ножниц:

  • исключение дефектов резки;
  • сохранение покрытия обрабатываемого материала;
  • высокая точность раскроя.

Ножницы выполняют продольный и поперечный раскрой листового материала с помощью косого гильотинного ножа. Косая форма лезвия осуществляет разрезание листа под углом, что позволяет снизить необходимое усилие. Чем больше угол между лезвием и плоскостью заготовки, тем меньшее усилие требуется приложить, однако тем хуже получается качество реза.

4. Ручные гильотинные ножницы.

У этого вида ножниц есть весомый недостаток – они не смогут справиться с листом очень прочного металла.

5. Механические гильотинные ножницы.

В данном механизме используется электродвигатель, поэтому его производительность выше по сравнению с ручным вариантом гильотины.

6. Гильотинные ножницы с гидроприводом.

Усовершенствованный вид гильотинных ножниц зачастую оснащается системой ЧПУ, что позволяет добиться высокой производительности и точности раскроя. Кроме того, во встроенном программном обеспечении сохраняются все стандартные параметры проводимых операций, что также положительно влияет на производительность.

Стоимость раскроя

Цена на работы по раскрою, резке металла зависит от ряда факторов:

  • выбора технологии;
  • мощности используемого оборудования;
  • марки, толщины исходного сырья;
  • категории качества заготовок готовой продукции;
  • объема сырьевой партии.

Если предстоит работа с большим объемом сырья, то общая стоимость заказа может быть снижена за счет снижение значения стоимости расчетной единицы (килограмма, погонного метра).

Стоимость резки или раскроя небольших партий, как правило, обговаривается с заказчиком заранее. Она не всегда рассчитывается по формуле «цена расчетной единицы, умноженная на количество», так как любой заказ — большой или малый — требует переналадки оборудования.

Современный промышленный рынок предоставляет массу вариантов резки и раскроя сортового, профильного металла. Но основными критериями для определения исполнителя заказа всегда остаются качество работы, срок изготовления, стоимость выполняемых работ, дополнительные услуге по погрузке, транспортировке.

Делайте правильный выбор!

Влияние легирующих элементов на разрезаемость стали при кислородной резке

Обычно наличие легирующих элементов затрудняет процесс кислородной резки. Эти компоненты влияют на работу по-разному:

  • кремний (Si), если его содержание ниже 4 %, затрудняет процесс;
  • марганец (Mn), если его содержание выше 4 %, затрудняет процесс;
  • хром (Cr), если его содержание выше 5 %, затрудняет процесс, вызывает самозакалку кромок, уменьшает антикоррозийную стойкость материала;
  • никель (Ni), если его содержание выше 7 %, затрудняет процесс, вызывает образование трещин на кромках;
  • титан (Ti) хорошо влияет на разрезаемость;
  • вольфрам (W), если его содержание выше 10 %, затрудняет процесс, повышает хрупкость и твердость стали.

Плазменная резка металла

Практически все недостатки газокислородной резки можно исключить при использовании плазмы. Первые станки для плазменной резки металла появились где-то в 50-60 годах прошлого века. Данное оборудование было настолько громоздким и дорогостоящим, что приобреталось в основном только машиностроительными гигантами. В конце прошлого века плазменная резка металла стала более доступной и сейчас распространена повсеместно.

Плазменная резка металла производится за счет интенсивного расплавления металла вдоль линии реза теплом сжатой электрической дуги и последующего удаления жидкого металла высокоскоростным плазменным потоком. По своей сути плазма – это полностью или частично ионизированный газ, обладающий температурой 15 000 – 20 000°С. Соответственно, нетрудно догадаться, что производительность плазменной резки будет в разы больше газокислородной, температура которой достигает всего 1 800°С.

На сегодняшний день плазменная резка является самым действенным способом раскроя металла, имеющим ряд особенностей, делающих ее лидером в области металлообработки. Так, процесс резки металла плазмой не требует заправки газовых баллонов и их доставки, присадок для резки ценных металлов или особого соблюдения мер пожарной безопасности. Для плазменной резки необходимы только электроэнергия и воздух, а в качестве расходных материалов – сопла и электроды, поэтому данный вид является одним из самых экономичных способов.

Плазменная резка экономически целесообразна для обработки:

  • алюминия и сплавов на его основе толщиной до 120 мм;
  • меди толщиной до 80 мм;
  • легированных и углеродистых сталей толщиной до 50 мм;
  • чугуна толщиной до 90 мм.

При толщине металла от 120 до 200 мм обработка плазмой возможна, однако выгоднее в данном случае использовать газокислородную резку.

В процессе раскроя металла крайне важны такие характеристики, как толщина и теплопроводность. Соответственно, при подборе оборудования необходимо учитывать простой факт: чем выше теплопроводность разрезаемого металла, тем больше теплоотвод и меньше возможная толщина обрабатываемого листа, К примеру, толщина листа меди должна быть меньше, чем листа из нержавейки.

Достоинством плазменной резки является увеличение скорости реза. Данный факт позволяет превалировать такому методу над кислородной горелкой, поскольку скорость увеличивается на 6-10 раз, что немаловажно при обработке заготовок толщиной 40-60 мм.

Как выполняются различные виды газовой резки металла

Принцип газовой резки основан на свойстве металлов сгорать в чистом кислороде при температуре +1200…+1300 °С. Сегодня этим способом не только режут металлические детали под разными углами, но и обрабатывают кромки заготовок для последующей сварки.

Резать заготовку начинают с ее кромки. Предварительно поверхность листа очищается от следов ржавчины, окалины и загрязнений. Для разрезания листа используется газ, находящийся в баллонах под высоким давлением.

В качестве газа обычно применяется сжатый кислород, струя которого прожигает металлическую заготовку с образованием окислов железа. Окислы расплавляются и выдуваются из области реза. Для подвода кислорода используется специальное устройство, располагаемое на сварочной горелке. Технологически сварочная горелка выполняет роль резака.

Кроме кислорода также применяются коксовый, нефтяной и природный водород, ацетилен, керосин и бензин в парообразном состоянии, при возгорании они дают температуру +3200 °С. Соответственно, в зависимости от используемого газа, резка может быть водородно-кислородного, ацетилено-кислородного и бензино-кислородного вида. В меньшей степени применяются машинный и ручной способы.

Существует также кислородно-флюсовая обработка, выделяемая в отдельный вид. С ее помощью можно резать такие тугоплавкие и сложные для разрезания металлы, как чугун, сплавы алюминия, высокохромистые и хромоникелевые стали. Для облегчения процедуры в кислород добавляется флюс, и полученная смесь затем выдувается.

Непосредственно раскрой материала осуществляют струей перпендикулярно к поверхности. Кроме этого, сжатым газом могут производить кислородную обработку, направляя режущую струю под острым углом к поверхности заготовки.

Таким способом обрабатывают среднелегированную и низколегированную углеродистую листовую сталь толщиной до 300 мм. Кислородную резку применяют как в металлургической промышленности, так и в индивидуальном строительстве. С помощью газа можно резать довольно толстые металлические листы. В этом заключается главное достоинство данного способа. Ширина реза при этом составляет от 2 до 2,5 мм. Закаливания металла в процессе обработки не происходит. Кромка реза получается перпендикулярной к поверхности.

Почему следует обращаться именно к нам

Мы с уважением относимся ко всем клиентам и одинаково скрупулезно выполняем задания любого объема.

Наши производственные мощности позволяют обрабатывать различные материалы:

  • цветные металлы;
  • чугун;
  • нержавеющую сталь.

При выполнении заказа наши специалисты применяют все известные способы механической обработки металла. Современное оборудование последнего поколения дает возможность добиваться максимального соответствия изначальным чертежам.

Для того чтобы приблизить заготовку к предъявленному заказчиком эскизу, наши специалисты используют универсальное оборудование, предназначенное для ювелирной заточки инструмента для особо сложных операций. В наших производственных цехах металл становится пластичным материалом, из которого можно выполнить любую заготовку.

Преимуществом обращения к нашим специалистам является соблюдение ими ГОСТа и всех технологических нормативов. На каждом этапе работы ведется жесткий контроль качества, поэтому мы гарантируем клиентам добросовестно выполненный продукт.

Благодаря опыту наших мастеров на выходе получается образцовое изделие, отвечающее самым взыскательным требованиям. При этом мы отталкиваемся от мощной материальной базы и ориентируемся на инновационные технологические наработки.

Мы работаем с заказчиками со всех регионов России. Если вы хотите сделать заказ на металлообработку, наши менеджеры готовы выслушать все условия. В случае необходимости клиенту предоставляется бесплатная профильная консультация.

Статьи по темам: Изделия из металла, Металлообработка, Сварка, Лазерная резка, Металлоконструкции, Плазменная резка, Гибка металла, Шкафы, Свойства металлов, Механическая обработка, Покраска

Оборудование для кислородной резки

Поскольку для работы часто используют ацетилен, то в качестве оборудования для кислородной резки нередко берут установки для ацетиленовой сварки. Вместо сварочных горелок там применяются газовые резаки. Наиболее распространенный вариант — резак инжекторного типа.

По своей конструкции резаки существенно отличаются от горелок. Они имеют дополнительные трубки, через которые подается режущий кислород, и наконечники с мелкими отверстиями для смеси газов. Центральное отверстие предусмотрено для подачи режущего кислорода.

Рисунок 4 — Схема установки для кислородной резки

Принцип работы машины для кислородной резки:

  • заготовка располагается горизонтально, вентили резака закрыты;
  • открывается кислородный вентиль, а после — вентиль горючего газа;
  • смесь воспламеняется и регулируется по мощности;
  • металл нагревается по площади реза;
  • открывается вентиль с режущим кислородом, активирующим горение при достижении разогретого металла;
  • в процессе появляются окислы, они удаляются струей кислорода;
  • при окончании работы сначала закрывают вентиль режущего кислорода, потом горючего газа, в завершении — горелки.

Основной инструмент комплекта кислородной резки — резак. Существуют классификации этих элементов:

  • по виду горючего газа (резаки для жидких горючих смесей, ацетилена, газов-заменителей);
  • степени автоматизации (ручные, машинные);
  • назначению (специальные и универсальные);
  • смешиванию газов (безинжекторные и инжекторные);
  • мощности пламени (большая, средняя, малая).

Необходимое оборудование для газосварки

Газосварочное оборудование применяется с целью соединения или резки металлических элементов под действием высокой температуры. Оно предполагает использование разных видов приборов и аксессуаров, в зависимости от вида проводимых работ. Для обработки металла используются несколько компонентов.

Водяной, или жидкостный затвор

Защищает части устройств от обратного удара сварочного пламени. Это может случиться тогда, когда скорость подачи газа меньше скорости возгорания, или в случае засорения каналов мундштука горелки. Таким предохранительным устройством оснащены все генераторы.

Баллоны с газом

Специальные цилиндрические резервуары с вентилями для хранения и транспортировки химического вещества. Определить, какой в них содержится вид, можно по цвету.

Редуктор

Снижает давление газа или держит его на определенном уровне. Устройство бывает прямого и обратного действия. Это важный элемент газобаллонного оборудования, который определяет работоспособность всей системы. Есть разные виды устройств, среди которых – кислородный редуктор. Он приспособлен к агрессивной среде и имеет голубую маркировку.

Газовый шланг

Обеспечивает подачу горючих жидкостей. Он сделан по особой технологии. Это многослойное изделие, выдерживающее агрессивную среду, с внутренним диаметром не больше 16 мм. В зависимости от категории, шланги маркируют красным, желтым и синим цветом.

Газовая горелка

Является основной частью сварочного оборудования. Она образует пламя, необходимо для нагревания и плавления металла. По конструкции изделие бывает двух видов: инжекторного и безинжекторного. Газовая горелка работает на разных мощностях. Выбор зависит от количества газа, подаваемого в единицу времени.

Специальный стол

Повышает удобство работы сварщика, так как выполняет несколько функций:

  • фиксирует рабочие заготовки;
  • хранит вспомогательный инструмент;
  • является контуром заземления.

В конструкции может быть поворотная или статичная столешница.

РАЗНОВИДНОСТИ ПИЛ ДЛЯ РЕЗКИ МЕТАЛЛА

Как и с ручными ножницами, существует несколько видов пил для металлорезки, которые обладают своими плюсами и минусами:

Дисковая пила

Самая легкая в работе пила. В дисковой пиле используются качественные диски из высокоустойчивых твердых сплавов или быстрорежущая специальная сталь, не подверженная температурному режиму. Основное ее применение — распил тонких металлических листов и листов средней толщины. Обычно один из факторов ценообразования на дисковую пилу — это ее распиловочный круг, ведь в зависимости от его диаметра, пила расширяет свой возможный спектр задач.

Из минусов можно отметить то, что хорошие дисковые пилы редко стоят дешево и имеют крупные габариты, что не всегда удобно.

Сабельная пила

Сабельная пила по своему образу схожа с электродрелью с удлиненной пилой, а по принципу работы — с электролобзиком. Существует 2 варианта сабельных пил: аккумуляторные и с зарядкой от сети.

Многообразие пильных полотен позволяет выполнять сабельной пилой различные задачи по резке металла. С сабельной пилой сложнее управляться, нежели с дисковой — для нее надо иметь правильные навыки и отличный глазомер.

Углошлифовальная машина

За этим серьезным названием скрывается знакомая всем болгарка. Интересно то, что изначально она разрабатывалась как инструмент для шлифования, однако теперь по функциональным качествам заменят сабельную и дисковую пилы.

Универсальность углошлифовальной машины позволяет проводить резку, шлифовку и полировку металлических изделий — для этого стоит просто купить необходимые материалы и комплектующие.

Разрезание плазменным методом

Разрезание металлоизделия плазмой подразумевает воздействие на его определенный участок газовой смеси под высоким давлением. Плазменный поток представляет собой сильно нагретый и подвергшийся ионизации газ. Температура потока составляет 15000

0

С.

Резка плазменной дугой и плазменной струей

В месте воздействия плазмы на деталь происходит ее выгорание и плавление. Части расплавленного металла выдуваются газовой смесью. Метод можно использовать для резки любых типов изделий.

Нарезание металлоизделий плазмой превосходит по производительности все другие способы. Она в 10 раз быстрее любых механических методов резки металлоизделий. Плазменное разрезание в 4 раза быстрее лазерного метода.

Плюс метода в том, что им осуществляют разрезание металлических изделий различной толщины (до 150 мм).

Имеются минусы у данного способа:

  • требуется металлообработка краев деталей;
  • края после обработки имеют небольшой наклон на 4
    0

    ;

  • не рекомендуется применять для разрезания титана и других металлоизделий большой толщины.

Механические варианты резки металла

При влиянии чистой механики используется самый широкий круг инструментов: диски, пилы, прессы, механические резаки. Такие способы воздействия на металл работают не только на промышленном уровне, но и в небольших гаражах на самом бытовом производстве.

Отрезные станки с заменяемыми дисковыми частями (болгарки) используется как стационарное оборудование, так и в качестве мобильного. Резать таким инструментом можно трубы,, разные конструкции, профиля и листы разных сплавов. При этом инструмент отличается высокой точностью выполнения работ, а также скоростью.

Рубка металла — в таком случае есть горизонтальный ножик. Он прижимается к листу металла и разрушает его в зоне контакта. Усиливает работу пресса гидравлика, пневматика или эксцентриковый механизм.

Также резка и рубка профлиста прекрасно выполняется на гильотинах сабельного типа. Рубка на гильотине предполагает ограничения по некоторым конструкциям со сложной структурой.

Ленточнопильный станок считается наиболее универсальным вариантом для резки любых изделий из металла. При таком варианте резки снижаются потери тепла, а сам процесс происходит под любым удобным углом. Минус станка в том, что резка доступна только для определенных размеров металла и деталей.

Перспективы развития отрасли обработки металлов резанием

Перечисленные способы применяются на практике и известны всем. Но ученые разрабатывают новые способы: например, в Германии создали установку для резки металла с помощью электромагнитного импульса, которая работает быстро, бесшумно и не оставляет следов. Также проводятся эксперименты по резке с помощью ультразвука. Возможно, что уже в обозримом будущем они получат повсеместное распространение.

Ширина реза и максимальная толщина заготовки (баллы):

Вид резкиТолщинаШирина
Гильотина110
ЛПС99
Газокислородная85
Плазменная66
Лазерная310
Гидроабразивная98

При резке металла толщиной 50 мм ширина реза при использовании гидроабразивной установки составляет 2 мм, а газокислородной – 20 мм. Это дает экономию 15 кг металла на 1 метр реза.

Качество реза и производительность (баллы):

Вид резкиКачество резаПроизводительность
Гильотина99
ЛПС84
Газокислородная56
Плазменная79
Лазерная97
Гидроабразивная105

Основные виды лазеров для резки металла

Лазер – одно из самых эффектных изобретений XX века. Причем долгое время после открытия истинную важность и применимость его в промышленности не понимали. Для многих ученых умов лазер был неким устройством, способным самостоятельно искать решение различных задач. В настоящее время лазерные технологии применяются везде – от медицины до космической промышленности.

В машиностроении лазерная резка применяется уже достаточно давно. Первыми начали использовать эту технологию предприятия судостроительной, авиационной и автомобильной отраслей, которые были заинтересованы во внедрении передовых технологий ради увеличения производительности. Растущая конкуренция мотивировала производителей внедрять инновационные системы управления рабочими процессами.

На предприятиях сегодня используются следующие виды станков для резки металла с помощью лазера:

  • твердотельные установки, использующие соединения редкоземельных элементов и кристаллические драгоценные минералы, основанные на принципе накачки фотонов импульсными лампами либо лазерными диодами;
  • газовые установки, в качестве активаторов использующие смесь инертных газов, возбуждаемую электрическими разрядами или направленной химической реакцией;
  • волоконные установки, где активная среда с резонатором выполнена из оптоволокна полностью либо в комбинации с другими элементами.

Антикоррозионные стали и цветные металлы обладают высокой отражающей способностью. Поэтому специально для их обработки были созданы лазерные установки с резонатором из оптоволоконной трубки, в которых лазерный луч фокусируется сильнее и не рассеивается о поверхность металлических заготовок.

Большое распространение имеют газовые виды лазерных установок, работающие на смеси углекислого газа, гелия и азота. Для большей отражающей способности на зеркала резонатора в данной установке нанесено серебряное либо золотое напыление.

Лазерная технология раскроя непрерывно совершенствуется. Для увеличения производительности оборудования, точности и качества реза испытываются все новые типы установок, внедряется и усложняется компьютерное управление процессами с контролем всех режимов обработки.

Рейтинг
( 2 оценки, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]