Твердость металлов: в чем измеряется, шкала, определение, единицы измерения, таблица


Понятие

Данным термином в материаловедении называют механическое свойство, которое определяет устойчивость к разрушению под воздействием других, более плотных веществ. Иначе можно сказать так: это сопротивляемость деформациям от давления. При этом учитываются и пластичные, и упругие изменения.

От характеристики зависит множество процессов и условий:

  • Износостойкость – это есть то, насколько долго может быть использован элемент. В том числе срок износа, поскольку для каждой детали, например автомобильной, наступает время, когда по естественным причинам ее нужно менять. Но чем тверже элемент, тем дольше он будет служить в определенных условиях.
  • Возможность различных видов металлообработки – одни технологии применяются только к мягким сплавам, а другие могут быть использованы и для прочных.
  • Сопротивление давлению и другим усилиям характерно для вала или подшипника, на которые действуют силы центробежная и трения.
  • Способность использовать материал в качестве инструмента для более податливой поверхности. Инструментальная сталь является настолько крепкой, что применяется для изготовления фрез для фрезерных станков, сверл и прочих изделий.

Это далеко не полный перечень того, на что влияет твердость металла после того, как мы дали ему определение. Не каждое используемое вещество берется с одинаковыми характеристиками. Что делается прежде всего для увеличения данного параметра? Сперва берем сырье, очищаем от примесей, а затем подвергаем химической и температурной обработке. А именно: в состав добавляем различные легирующие компоненты, повышающие это качество, например:

  • Хром. Увеличивается прочность и устойчивость к коррозии, незначительно уменьшается пластичность и подверженность магнитным силам. Если более 13% хрома, то сплав называют нержавеющим.
  • Вольфрам. Очень сильно повышается содержание твердых соединений – карбидов. Дополнительное свойство – снижение хрупкости после отпуска.
  • Ванадий. Тоже возрастает сопротивление деформациям.
  • Марганец. Чтобы увидеть эффект, вещества должно быть не менее 1%. Резко взлетает стойкость к ударным нагрузкам.

От чего зависит твердость металлов по этому классу:

  • От наличия легирующих добавок, перечисленных выше.
  • От естественных свойств сырья.
  • От термообработки. С этой целью помогает закалка – материал нагревают сверх определенной критической точки, кристаллическая решетка меняется, и после охлаждения закаленная сталь становится очень надежной.
  • От цементации – способом диффузии образец насыщается углеродом. Такому методу подвергаются только низкоуглеродистые или легированные части.
  • От старения – оно может быть естественным или искусственным. В первом случае со временем протекают процессы, которые не затрагивают микроструктуру, но важны на общем уровне. Во втором применяется термообработка с целью химического и термального увеличения срока эксплуатации – состаривание.
  • От наклепывания на поверхность. Это пластическое изменение структуры вещества, приводящее к повышению прочности.
  • От обработки лазером. Лазерная установка наплавляет прочный слой.

Кроме того, некоторые этапы металлообработки (прокатка, ковка и закалка) с изменением формы заготовки также приводят к улучшению качества.

Классификации и свойства различных металлов

Металлами называют группу простых веществ, отличающихся от всех остальных своими характерными свойствами. В природных условиях их нельзя встретить в чистом виде – только в качестве руд и соединений. Изучением их свойств занимаются специалисты по химии, физике, металловедению.

При работе с металлами необходимо учитывать целый ряд их качеств. Механические характеристики влияют на их возможность сопротивляться деформации и разрушению. По технологическим свойствам оценивают целесообразность использования различных подходов к обработке. Химические особенности влияют на реакцию с разными веществами, а физические свидетельствуют об определенных реакциях на изменение теплового, гравитационного и электромагнитного поля.

Классификации и свойства различных металлов

При классификации отталкиваются от таких свойств твердых металлов, как:

  1. Твердость, то есть устойчивость к разрушению.
  2. Прочность, или способность не изменять форму, структуру, размеры после воздействия динамической, статической, знакопеременной нагрузки.
  3. Упругость, то есть сохранение целостности при изменении формы и возможность принять первоначальный вид.
  4. Пластичность, которая предполагает сохранение формы и целостности под действием сил.
  5. Износостойкость или сохранение параметров изделия при трении в течение долгого времени.
  6. Вязкость – это способность удерживать целостность в условиях повышающегося физического воздействия.
  7. Усталость, то есть число и период циклических воздействий, которые твердый металл может выдержать, при этом не потеряв целостности.
  8. Жароустойчивость, или возможность сохранять свойства даже при высоких температурах.

Ключевой характеристикой интересующих нас материалов является отрицательный коэффициент проводимости электричества. Он повышается при снижении температуры, а при ее увеличении частично либо совсем теряется. К второстепенным признакам относятся характерный блеск и высокая температура плавления. Также нужно понимать, что существуют типы металлов, являющихся соединениями, которые играют роль восстановителей во время окислительно-восстановительных реакций.

Все свойства твердых металлов связаны между собой, поскольку от составляющих материала зависят остальные его качества. Самая известная классификация металлов предполагает деление на черные и цветные, однако их оценивают и по ряду других признаков.

Черные металлы обладают высокой плотностью, им свойственна большая температура плавления и темно-серый окрас. Основными представителями данной группы являются железо и его сплавы. Чтобы добиться от сплавов специфических свойств, в них вносят легирующие добавки.

Черные твердые металлы

Все черные твердые металлы делят на подгруппы:

  1. Железные: железо, кобальт, марганец, никель. Чаще всего они играют роль основы либо добавки к сплавам.
  2. Тугоплавкие: вольфрам, молибден, титан, хром. Для их плавления требуется более высокая температура, чем для работы с железом. Именно из них изготавливают легированные стали.
  3. Редкоземельные: лантан, неодим, церий. Они обладают схожими химическими свойствами, но при этом имеют различные физические параметры. Их используют в качестве присадки к сплавам.
  4. Урановые, или актиноиды: актиний, нептуний, плутоний, торий, уран. Основная сфера их применения – это атомная энергетика.
  5. Щелочноземельные: кальций, литий, натрий – не используются сами по себе.

К черной группе относятся сплавы железа с разной долей углерода и дополнительными химическими элементами, такими как кремний, сера, фосфор. На производствах активно используются сталь и чугун.

В норме сталь содержит до 2 % углерода, ей свойственна пластичность и высокие технологические показатели. В чугуне содержание углерода выше и может доходить до 5 %. Свойства данного сплава можно изменять за счет добавления различных химических элементов: за счет серы и фосфора повышается хрупкость, хром и никель позволяет придать чугуну стойкость к высоким температурам и коррозии.

Рекомендуем статьи по металлообработке

  • Марки сталей: классификация и расшифровка
  • Марки алюминия и области их применения
  • Дефекты металлический изделий: причины и методика поиска

Цветные металлы используются чаще черных, так как большинство из них является сырьем для прокатных изделий. Кроме того, эти твердые материалы нашли применение в металлургии, машиностроении, радиоэлектронике, сфере высоких технологий и целом ряде других областей.

По физическим параметрам такие металлы классифицируют следующим образом:

  1. Тяжелые: кадмий, никель, олово, ртуть, свинец, цинк. В природе они встречаются в прочных соединениях.
  2. Легкие: алюминий, магний, стронций, титан и другие. Выделяются на фоне других небольшой температурой плавления.
  3. Благородные: золото, платина, родий, серебро. Имеют высокую стойкость к коррозии.

В целом, цветные металлы обладают небольшой плотностью и температурой плавления, также они пластичны и обычно имеют белый, желтый или красный цвет. Так как эти материалы не могут похвастаться высокой прочностью, их не используют в чистом виде, а изготавливают легкие сплавы различного назначения. В том числе их применяют при производстве техники.

Отметим, что материалы, относящиеся к данной группе, обладают внушительным атомным весом и более высокой плотностью, чем железо.

На производствах активно используется медь в качестве проводника электрического тока. Она имеет розовато-красный оттенок, низкое удельное сопротивление, хорошо проводит тепло, отличается небольшой плотностью, хорошей пластичностью и устойчивостью к образованию ржавчины.

Не менее актуальны для сферы производства сплавы меди, такие как бронза (с добавлением алюминия, никеля или олова) и латунь (с цинком). Бронза используется для изготовления мембран, круглых и плоских пружин, червячных пар и различных видов арматуры. Латунь идет на изготовление лент, листов, проволоки, труб, втулок, подшипников.

Группа тяжелых металлов относится к основным причинам, из-за которых ухудшается состояние экологии. Токсичные вещества сбрасываются в естественные водоемы вместе со сточными водами промышленных предприятий. Некоторые вещества данной группы способны накапливаться в живых организмах.

Ртуть высокотоксична, ее соединения попадают в атмосферу во время сжигания угля на электростанциях, после чего вместе с осадками оказываются в водоемах. Это приводит к тому, что в организме пресноводной и морской рыбы, а также других обитателей данных систем постепенно накапливается высокая доля опасного вещества. При потреблении в пищу таких морепродуктов человек может отравиться, что нередко приводит к летальному исходу.

Кадмий – рассеянный и достаточно редкий элемент, но и он попадает в океан вместе со сточными водами с металлургических предприятий. В небольших количествах кадмий содержится в нашем организме, однако при серьезном превышении данного уровня он разрушает костную ткань и приводит к анемии.

Свинец в рассеянном состоянии содержится практически везде. Но его избыточная доля в организме человека приводит к проблемам со здоровьем.

Помимо твердых, выделяют также мягкие виды металлов.

Мягкие виды металлов

Алюминий имеет серебристо-белый оттенок, небольшой вес, хорошую электропроводность, устойчив к коррозии и пластичен. Благодаря таким свойствам, этот материал широко используется в строительстве самолетов, электрической и пищевой промышленности. Также сплавы алюминия незаменимы в машиностроении.

Магний достаточно легко поддается коррозии, однако является незаменимым материалом для применения в технической области. В сплавах с магнием используют алюминий, марганец и цинк, так как они легко поддаются резанию и имеют высокую прочность. Такие соединения применяются для изготовления корпусов фотоаппаратов, двигателей и других приборов.

Титан используется в машиностроительной, ракетной отраслях и химической промышленности. Сплавы на его основе обладают небольшой плотностью, отличными механическими свойствами, устойчивы к коррозии и без труда обрабатываются давлением.

Существует ряд твердых металлов, которые редко встречаются в природе, при этом их добыча сопряжена с большими трудозатратами. Речь идет о металлах благородной группы, таких как:

  • золото;
  • серебро;
  • платина;
  • родий.

Металлы благородной группы

Люди узнали о золоте и его свойствах еще в каменном веке. Этот металл встречается в природе в виде самородков с небольшой долей примесей либо его можно найти в виде сплавов с серебром. Золото имеет высокую теплопроводность, низкое сопротивление и хорошую ковкость, все эти свойства особенно ценят ювелиры.

Серебро уступает золоту по ценности. В природе его чаще всего можно найти в виде серебряной руды. Серебро мягкое, пластичное, тепло- и электропроводное.

Платина была открыта только в середине XX века и считается редким материалом. Дело в том, что его можно найти лишь в залежах в виде различных сплавов, что усложняет его добычу. Основная ценность платины состоит в том, что она не вступает в реакцию с кислотами, а при нагревании не меняет цвет и не окисляется.

Родий тоже входит в число благородных твердых металлов. Он имеет серебристо-голубой оттенок, устойчив к химическому воздействию, не боится перепадов температур, при этом остается хрупким и теряет свои свойства под механическим воздействием.

Кроме того, металлы принято делить на твердые и мягкие.

К самым мягким металлам относят калий, натрий, рубидий и цезий. В эту же группу входят золото, серебро, медь и алюминий. Золото можно найти в морских комплексах, осколках гранитов и даже в организме человека. Оно способно разрушаться при воздействии внешних факторов. Мягкое серебро используют в качестве материала для посуды, ювелирных изделий. Натрий активно применяется в большинстве промышленных отраслей. Ртуть является самым мягким металлом в мире, ею пользуются в сельскохозяйственной, химической промышленности, электротехнике.

В каких единицах измеряется твердость металла

Особенность данной характеристики в том, что в зависимости от метода, которым проводили замер, меняется и классическое обозначение. Так как параметр нельзя причислить к основным физическим шкалам, таким как расстояние, скорость, масса, сила, то и единого стандарта нет в так называемой системе СИ.

Если исследователь применяет один из наиболее стандартных способов, предложенный Бриннелем, о котором мы подробнее расскажем ниже, то результат будет записан в кгс/мм2, то есть в килограмм-силах, деленных на квадратный миллиметр. По шкале измерения твердости металлов можно сказать о классических примерах и их показателях в соотношении друг с другом:

  • железные сплавы – в среднем 30 кгс/мм2;
  • медные и никелевые составы – 10 кгс/мм2;
  • алюминий, магний и их производные – 5 кгс/мм2.

Так делаем вывод, что железо в 6 раз тверже, чем мягкое алюминиевое соединение.

Второй популярный метод изобрел Роквелл. Согласно ему, одно условное значение (у.е.) равно перемещению конуса на 2 мкм. Если маркируется по данному варианту, то сперва проставляется индексация, затем одна из трех букв – А, В, С и цифровое значение. Если вы видите на заготовке твердость материала НВ, то это единицы измерения по Роквеллу. Также индексом могут быть отмечены детали под маркировкой HR, а после 1 из трех букв:

  • A – свидетельствует о том, что испытания проводились с помощью конуса из алмаза с углом вершины в 120 градусов под прилагаемой нагрузкой в 50 – 60 кг.
  • В – говорит о шарике в одну шестнадцатую дюйма, который направляют к поверхности под весом в 90 – 100 кг.
  • С – используется аналогичный конус, как при маркировке А, но увеличенное воздействие в 140 – 150 кг.

Дальше идет цифра, которая уже указывает на то, какая вмятина образовалась.

И еще один вариант того, в чем измеряется твердость стали, – цифры плюс буквы HV. Такое измерение предлагает Виккерс. В то время как по методике Шора можно увидеть такие записи – 90 HSD.

Таблица «Металлы»

В следующей таблицы представлены группы основных металлов:

Группа металловМеталл
Щелочныелитий, натрий, калий и т.д.
Щелочноземельныекальций, стронций, барий и т.д.
Переходныеуран, титан, железо, платина и т.д.
постпереходныеалюминий, свинец, олово и т.д.
Тугоплавкиемолибден, вольфрам
Цветныемедь, титан, магний и т.д.
Благородныезолото, серебро и т.д.

Металлы пластичны и ковки, особенно если на внешнем электронном уровне атомов по одному электрону: слои атомов перемещаются относительно друг друга без разрушения кристаллической решетки (щелочные металлы, медь, серебро, золото). В атомах непластичных хрупких металлов хрома и марганца – большое число валентных электронов.

Плотность, твердость, температура плавления металлов изменяются в широком диапазоне и зависят от атомной массы, строения атома и геометрии кристаллической решетки. Самый легкий металл – литий (плотность 0,53 г/см3), самый тяжелый – осмий (плотность 22,5 г/см3). Металлы с плотностью больше 5 г/см3 относят к тяжелым, меньше 5 г/см3 – к легким металлам.

Самая низкая температура плавления у ртути (-39 градусов по Цельсию), самый тугоплавкий металл – вольфрам (температура плавления 3410 градусов по Цельсию.) Энергия атомизации вольфрама составляет 836 кДж/моль, а температура кипения его 5930 градусов.

Металлы вступают в реакцию как с простыми, так и со сложными веществами. Как типичные восстановители металлы реагируют почти со всеми неметаллами-окислителями (кислород, сера, азот и т. д.):

4Al+3O2=Al2O3

Также металлы реагируют с такими сложными веществами, как оксиды и гидроксиды, разбавленные растворы кислот, с растворенными в воде щелочами.

В пределах одного и того же периода металлические свойства ослабевают, а неметаллические усиливаются; в пределах одной и той же группы (в главной подгруппе) металлические свойства усиливаются, а неметаллические ослабевают

Рис. 3. Металлы главных подгрупп.

Насколько твердыми бывают основные металлы

Большинство материалов уже обладают определенными характеристиками, их давно измерили и записали в таблицы, при этом в сводках обозначены как исходные значения необработанного железа, так и после различных типов термо- и холодной металлообработки. Но при добавлении нестандартных и новых добавок, проведенных процедур необходимо заново измерять данный показатель. Но если вы сталкиваетесь со стандартными сплавами, то следует посмотреть в подготовленные списки.

Цветмет

Они более мягкие, чем черные, потому что в них нет твердых включений, а также их не подвергают закалке и прочим методам термообработки.

Титан составляет исключение. Приведем технологию, используемую Бриннелем:

МатериалОсобенностиВ нв
МедьИмеет высокую пластичность и низкую прочность. если добавляются специальные примеси, получаются новые марки, тогда показатель может увеличиваться.35
ЛатуньЭто двойной или многокомпонентный состав, который включает медь. но она более надежная, дополнительно включены цинк или олово.42 – 60
АлюминийМожет быть мягким или твердым, с увеличенной или уменьшенной пластичностью.15 – 20
ДюралюминийСовременный, легкий, активно применяется в авиастроении. есть добавки – медь, магний, марганец.70
ТитанОчень крепкий цветмет.160

Черные металлы

Это железо и стали, ферросплавы и чугуны. Иногда к этой категории относят ванадий, марганец. Общая характеристика:

  • Способ получения – обработка железной руды.
  • Увеличенная прочность.
  • Невосприимчивость к механическим воздействиям.
  • Высокая износостойкость.
  • Хорошая свариваемость.
  • Невысокая стоимость.

Поэтому железо активно применяют. Нецелесообразно приводить полный список всех марок, поэтому только основные:

  • Чугун – 220 НВ.
  • Инструментальные стальные сплавы – до 700 НВ, из нее делаются режущие инструменты.
  • Нержавейка – до 250 НВ.

Механические свойства твердых металлов

Основными механическими свойствами твердых веществ и их сплавов являются прочность, твердость, упругость, пластичность, вязкость.

Механические свойства твердых металлов

По данным свойствам судят о пригодности материала к использованию в различных условиях.

Прочностью называют сопротивление разрушению под действием нагрузки.

Твердость – способность металла противостоять внедрению в его поверхность другого тела с превосходящей твердостью.

Упругость – возможность восстанавливать форму и размеры после прекращения воздействия. Высокая упругость необходима рессорам и пружинам, поэтому для их производства используют соответствующие сплавы.

Пластичность – свойство изменять форму и размеры под действием внешней нагрузки и сохранять полученные характеристики после прекращения воздействия. Это качество противоположно упругости. Чем выше уровень пластичности, тем легче ковать, штамповать и прокатывать материал.

Вязкостью называют способность сопротивляться быстро возрастающим ударным нагрузкам. Данное свойство является обратным хрупкости. Вязкие металлы используются для изготовления деталей, подвергаемых в процессе работы ударным нагрузкам. Это могут быть элементы вагонов, автомобилей, пр.

Для определения механических свойств к твердому металлу прикладывают растягивающие, изгибающие и другие силы.

Механические свойства описываются:

  • пределом прочности (кг/мм2);
  • относительным удлинением (%);
  • ударной вязкостью (кгм/см2);
  • твердостью;
  • углом загиба.

Для определения названных ключевых свойств при помощи специальных машин проводят испытания на:

  • растяжение;
  • загиб;
  • твердость;
  • удар.

Испытание на растяжение. Так выявляют предел прочности и относительное удлинение материала. Предел прочности – это усилие, которое необходимо приложить на единицу площади поперечного сечения образца для его разрыва.

Как определить твердость металла по методике Бринелля: особенности

В качестве индентора, то есть самого элемента, который вдавливается в заготовку, используется идеальный шарик диаметром от 1 до 10 миллиметров. Он изготавливается из легированных соединений или из сплава карбида и вольфрама. Регламентируется производство таких шаров ГОСТом 3722 81.

Время, в которое происходит статическое, то есть неподвижное вдавливание, – от 10 до 180 секунд. Этот параметр зависит от материала. Самые минимальные временные промежутки – для чугуна и стали, а более продолжительные – для цветных металлов.

Максимальная нагрузка, которая может быть измерена таким способом, – 450 или 650 НВ, в зависимости от того, из чего сделан шарик.

На образец для правильной деформации подбирается воздействие, посмотрим по формулам в таблице, как можно их вычислить, учитывая, что D – это диаметр шара:

Проверяемый объектМатематически вычисленное изменение
Свинец или олово1d^2
Стальные соединения, титан, никель30d^2
Легкие сплавыот 2,5d^2 до 15d^2
Чугун10d^2 или 30d^2
Медь и составы с ее добавлением5d^2, 10d^2, 30d^2

Алгоритм применения метода Бринелля

  • Проверяется сам аппарат и тело для внедрения – шар.
  • Определяется максимальное усилие.
  • Твердомер запускается.
  • Измеряется глубина вдавливания.
  • Производятся математические вычисления.

Применяемая формула НВ=P/F, где:

  • P – нагрузка;
  • F – площадь отпечатка.

Следует отметить, что это самый распространенный способ.

Что такое твердость стали? (ч.2)

От чего зависит твердость металлов?

Востребованность указанных методов измерения твердости металла объясняется их следующими особенностями:

  • все описанные методы позволяют производить измерения каждого готового образца в отдельности, что, несомненно, повышает качество серийной продукции;
  • не происходит разрушения готового изделия (например, ножа) и в дальнейшем его можно использовать по назначению;
  • высокая скорость измерений, а значит большая производительность метода.

Важно: Результаты испытаний с помощью различных методов несопоставимы между собой.

Рассмотрим каждый метод в отдельности, уделив особое внимание методу Роквелла.

Метод Бринелля

Этот метод был предложен шведом Юханом Августом Бринеллем начале 20-го века. На тот момент, это был самый точный способ определения твердости металлов. В качестве индентора используются стальные шарики различного диаметра (от 1,2 до 10 миллиметров). Диаметр шарика выбирается в зависимости от предполагаемой твердости металла.

Бринелль разделил металлы на несколько групп, объединив их по твердости. В группу с минимальной твердостью попали олова, свинец и их сплавы. В группу с самой высокой твердостью вошли титан, никель и стальные сплавы. Для металлов с минимальной твердостью используется шарик самого малого диаметра, для металлов высокой твердости используется шарик самого большого диаметра.

Измерения происходят по следующему алгоритму: проверяемый образец помещают на специальный стол, сверху в образец происходит вдавливание индентора с постепенно увеличивающейся нагрузкой. Это происходит в течение короткого промежутка времени от 2-х до 8-ми секунд. После достижения максимального уровня динамической нагрузки, нагрузка поддерживается в статическом состоянии, примерно в течение 10-ти секунд. После завершения процедуры, на проверяемом образце замеряют диаметр отпечатка.

Расчет твердости происходит по формуле, где учитываются приложенная нагрузка, диаметр индентора и диаметр отпечатка. Твердость указывается в формате кгс/мм2, формат отображения HBW.

Метод Виккерса

При измерении твердости по методу Виккерса в качестве индентора используется наконечник в форме пирамиды, грани которой сходятся между собой под углом в 136 градусов. Для обеспечения точности испытания важно соблюсти несколько моментов:

  • нагрузка должна приходиться строго в центр алмазного наконечника;
  • вектор приложения нагрузки должен быть строго перпендикулярен поверхности испытуемого образца.

Измерения происходят по следующему алгоритму: проверяемый образец помещают на специальный стол, сверху в образец происходит вдавливание индентора сразу с необходимым уровнем нагрузки (максимальное возможное значение до 100 кгс). Далее происходит удержание индентора под нагрузкой в течение 10-15 секунд. После снятия индентора происходит измерение глубины вдавливания и диагонали отпечатка.

Далее происходит расчет по форму, где учитывается соотношение приложенной нагрузки к диагонали отпечатка и времени в течение которого происходило испытание.

Твердость указывается в формате кгс/мм2, формат отображения HV. Метод Виккерса за счет использования алмазного наконечника позволяет делать более точные измерения, чем метод Бринелля.

Метод Шора

Этот метод является продолжением всем хорошо известного метода «постукивания», когда постукивая по детали или заготовке, мастер пытается определить ее твердость. Метод предложен американский инженером Альбертом Шором в начале XX века. Суть метода заключается в том, что твердость металла определяется по высоте отскока индентора.

Прибор для измерения твердости состоит из полой трубки, на которой по всей длине сделан пропил с нанесенными делениями. Трубка устанавливается на поверхность измеряемого образца и в нее сбрасывается боек с алмазным наконечником. Твердость металла определяется визуально по высоте отскока бойка. По сути, этот прибор является «склерометром».

Данный тип измерений не дает высокой точности, но отлично подходит для экспресс-оценки твердости сплавов на металлургических производствах, когда нужно оперативно определить твердость большой детали или детали, которая имеет сложную поверхность.

Формат отображения твердости по Шору HSD (или HSC, в зависимости от используемой шкалы).

Метод Роквелла

В последнее время этот метод получил большое распространение, благодаря своей простоте и универсальности. Метод Роквелла не требует проведения дополнительных вычислений и значение измерения сразу выводится на шкалу прибора.

Этот метод придумали два однофамильца, которые носили одну фамилию Роквелл. Звали их Хью и Стенли. Оба они работали в металлургическом холдинге в штате Коннектикут, где в то время остро встал вопрос оперативного измерения твердости элементов подшипников. Существующий метод Бринелля не позволял производить измерения с высокой точностью, а также не позволял производить испытание на каждом готовом экземпляре.

Роквелы придумали способ измерения твердости, основанный на измерении разности глубины проникновения индентора в образец под разной нагрузкой.

Измерение твердости по методу Роквелла происходит по следующему алгоритму: выбирается соответствующая шкала и индентор, образец помещается на специально подготовленный стол, к нему прилагается предварительная нагрузка в 10 кгс, нагрузка снимается. Далее прилагается основная максимальная нагрузка, нагрузка снимается. Результат последнего измерения является величиной твердости металла по Роквеллу.

Как измерить твердость металла по методике Роквелла: особенности

Если предыдущая технология называется классической, то данную можно именовать современной, поскольку она более автоматизированная. Точность намного выше и сфер применения тоже, поскольку можно работать даже с очень прочными материалами.

Характеристики метода:

  • Изначальное давление в 10 кгс.
  • Напряжение выдерживают от 10 секунд до 1 минуты.
  • Результат не рассчитывается математически, он высвечивается на цифровом табло.
  • Используются разные наконечники, в зависимости от этого ставится маркировка, которая начинается с букв А, В, С. Мы уже подробнее указывали расшифровку индексов, просто напомним, что в качестве индентора может выступать стальной шарик или алмазный конус.

Есть также менее известные и используемые шкалы Е, Н, К с шаром меньшего диаметра. На процедуру накладываются ограничения:

  • Делать пробы на одной заготовке можно только на расстоянии по 3-4 у.е., равных размеру проверяющего объекта, друг от друга.
  • Толщина не может быть меньше, чем умноженная на 10 глубина проникновения наконечника в сталь.

План исследования по методу Роквелла

Алгоритм проведения аналогичный и даже более упрощенный:

  • Необходимо оценить деталь и проверить работоспособность станка.
  • Вычислить максимальную нагрузку.
  • Установить образец и применить первичное напряжение.
  • Выдержать определенный промежуток времени.
  • Зафиксировать результат, указанный на табло.

Посмотрим, как выглядит твердомер, а также как им пользоваться:

Значение различных свойств твердых металлов при использовании на производстве

Значение различных свойств твердых металлов при использовании на производстве

Механические свойства. Главным требованием, которому должно отвечать любое изделие, является достаточная прочность.

По сравнению с остальными материалами, металлы имеют более высокую прочность, поэтому их используют для изготовления нагруженных деталей машин, механизмов и сооружений.

Однако прочность – не единственное важное свойство. Также многие изделия должны иметь особые качества, обеспечивающие их нормальную работу. Так, режущим инструментам требуется повышенная твердость, поэтому их производят из инструментальных сталей и сплавов.

Для рессор и пружин используют стали и сплавы с высокой упругостью.

Вязкие металлы необходимы для деталей, которые в процессе работы должны испытывать на себе ударную нагрузку.

Такое свойство, как пластичность, позволяет обрабатывать интересующий нас материал давлением, то есть ковать, прокатывать.

Физические свойства. Для авиа-, авто- и вагоностроения небольшой вес деталей является одним из самых важных качеств, поэтому в данной сфере используют легкие сплавы алюминия и магния. Интересно, что удельная прочность, то есть отношение предела прочности к удельному весу, у некоторых алюминиевых сплавов превышает данный показатель мягкой стали.

Плавкость считается важным свойством, позволяющим получать отливки при помощи заливки расплавленного металла в формы. Легкоплавкие металлы (такие как свинец) принято использовать как закалочную среду для стали. Существуют сложные сплавы, температура плавления которых настолько низкая, что позволяет им расплавляться в горячей воде. Из них изготавливают типографические матрицы. Кроме того, они используются в приборах, обеспечивающих защиту от пожаров.

Медь, алюминий обладают высокой электропроводностью, поэтому широко используются в электромашиностроении, при строительстве линий электропередач. А сплавы с высоким электросопротивлением незаменимы в качестве материала для элементов ламп накаливания, электронагревательных приборов.

Благодаря магнитным свойствам твердых металлов удается изготавливать динамо-машины, моторы, трансформаторы, различные приборы связи, такие как телефонные и телеграфные аппараты, и целый ряд других устройств.

Теплопроводность используется в процессе пайки и сварки металлов.

Теплопроводность используется в процессе пайки и сварки металлов

Коэффициент линейного расширения у ряда сплавов приближен к нулю, благодаря чему удается использовать подобные материалы в производстве точных приборов, радиоламп. В процессе строительства длинных сооружений, таких как мосты, необходимо учитывать расширение металлов. Кроме того, нельзя забывать, что нагревание двух скрепленных друг с другом деталей из металлов с различным коэффициентом расширения приводит к их изгибу или разрушению.

Химические свойства. Коррозионная стойкость является ключевым свойством изделий, используемых в сильноокислительных средах. К таким изделиям относятся колосниковые решетки, детали химических машин и приборов. Если требуется повышенная коррозионная стойкость, используют нержавеющие, кислостойкие и жаропрочные стали. Кроме того, на них могут наноситься специальные защитные покрытия.

Технологические свойства имеют немаловажное значение при осуществлении разного рода производственных операций.

Характеристики методики Виккерса

Еще один очень простой способ, который отличается скоростью и точностью, но дороговизной оборудования. Перечислим особенности:

  • Используется алмазная пирамидка с более тупым углом – 136 градусов в вершине.
  • Не допускается деформация более 100 кгс.
  • Выдерживают время очень короткое – от 10 до 15 секунд.
  • Измерять можно параметры любого материала, в том числе особенно прочного, а также сталей, которые прошли термическую обработку.

Последовательность исследования

Упрощенный алгоритм:

  • Проверьте поверхностный слой детали, а также все оборудование.
  • Рассчитайте допустимое усилие.
  • Установите образец, закрепите его.
  • Запустите аппарат и спустя 10-15 секунд проанализируйте итог.

Способы перехода между шкалами

Тот факт, что в лабораториях используются разные методы, а также то, что нет одного стандарта, то приходится конвертировать один показатель в другую систему счисления. Следует отметить, что во всех странах преимущественно выбирают одну технологию. Но из-за активного товарооборота изготовители встречаются с непривычными маркировками. Итак, дадим таблицу с аналогичными результатами по отличающимся данным:

Диаметр от вдавливания – в ммПо БринеллюПо Роквеллу, категория АВСПо Виккерсу
3,924162,899,824242
4,0821760,796,620,2217
4,220659,694,617,9206
514449,977,7144

Можно отметить, что списки не обладают особо высокой точностью, поскольку в зависимости от измерений могли быть использованы разнообразные сплавы. Сводки будут верны только в том случае, если при всех пяти способах был апробирован одинаковый материал.

Методы измерения твердости

Все методы определения твердости металлов используют механическое воздействие на испытуемый образец – вдавливание индентора. Но при этом не происходит разрушение образца.

Метод определения твердости по Бринеллю был первым, стандартизованным в материаловедении. Принцип испытания образцов описан выше. На него действует ГОСТ 9012. Но можно вычислить значение по формуле, если точно измерить отпечаток на образце:

HB=2P/(πD*√(D 2 -d 2 ),

  • где Р – прикладываемая нагрузка, кгс;
  • D – окружность шарика, мм;
  • d – окружность отпечатка, мм. Шарик подбирается относительно толщины образца. Нагрузку высчитывают предварительно из принятых норм для соответствующих материалов: сплавы из железа — 30D 2 ; медь и ее сплавы — 10D 2 ; баббиты, свинцовые бронзы — 2,5D 2 .

Условное изображение принципа испытания

Схематически метод исследования по Роквеллу изображается следующим образом согласно ГОСТ 9013.

Метод измерения твердости по Роквеллу

Итоговая приложенная нагрузка равна сумме первоначальной и необходимой для испытания. Индикатор прибора показывает разницу глубины проникновения между первоначальной нагрузкой и испытуемой h –h0.

Метод Виккерса регламентирован ГОСТом 2999. Схематически он изображается следующим образом.

Математическая формула для расчета: HV=0.189*P/d 2 МПа HV=1,854*P/d 2 кгс/мм 2 Прикладываемая нагрузка варьируется от 9,8 Н (1 кгс) до 980 Н (100 кгс). Значения определяются по таблицам относительно измеренного отпечатка d.

Метод считается эмпирическим и имеет большой разброс показаний. Но прибор имеет простую конструкцию и его можно использовать при измерении крупногабаритных и криволинейных деталей.

Измерить твердость по Моосу металлов и сплавов можно царапанием. Моос в свое время предложил делать царапины более твердым минералом по поверхности предмета. Он разложил известные минералы по твердости на 10 позиций. Первую занимает тальк, а последнюю алмаз.

После измерения по одной методике перевод в другую систему весьма условен. Четкие значения существуют только в соотношении твердости по Бринеллю и Роквеллу, так как машиностроительные предприятия их широко применяют. Зависимость можно проследить при изменении диаметра шарика.

d, ммHBHRAHRCHRB
2,371285,166,4
2,560181,159,3
3,041572,643,8
3,530266,732,5
4,022961,82298,2
5,014377,4
5,213172,4

Как видно из таблицы, увеличение диаметра шарика значительно снижает показания прибора. Поэтому на машиностроительных предприятиях предпочитают пользоваться измерительными приборами с однотипным размером индентора.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями: