Таблица электрической проводимости металлов. Электронная проводимость металлов


AISI 304

Обозначение по международным стандартам

Международный стандартАмериканский ASTM A240Европейский ЕN 10088-2Российский ГОСТ 5632-72
Обозначение маркиAISI 3041.430108Х18Н10
12Х18Н9

Применяемые стандарты и одобрения

AMS 5513 ASTM A 240 ASTM A 666

Классификация

сталь коррозионно-стойкая жаропрочная

Применение

  • Предметы домашнего обихода
  • Раковины
  • Каркасы для металлоконструкций в строительной промышленности
  • Кухонная утварь и оборудование для общепита
  • Молочное оборудование, пивоварение
  • Сварные конструкции
  • Резервуары судовые и наземные танкеры для продовольствия, напитков и некоторых химических веществ

Обычно производители стали разделяют марку на три основных класса (сорта) по способности к волочению:

  • AISI 304 – Основной сорт
  • AISI 304 DDQ (Normal and deep drawing) – Сорт глубокой вытяжки
  • AISI 304 DDS (Extra deep drawing) – Сорт особо глубокой вытяжки

Основные характеристики

  • хорошее общее сопротивление коррозии
  • хорошая пластичность
  • превосходная свариваемость

Химический состав (% к массе)

стандартмаркаCSiMnPSCrNi
ASTM A240AISI 304≤0.080≤0.75≤2.0≤0.045≤0.03018.00 – 20.008.00 – 10.50

Механические свойства

AISI 304Сопротивление на разрыв (σв), Н/мм²Предел текучести(σ0,2), Н/мм²Предел текучести(σ1,0), Н/мм²Относительное удлинение (σ), %Твердость по Бринеллю (HB)Твердость по Роквеллу (HRB)
В соответствии с EN 10088-2≥520≥210≥250≥45
В соответствии с ASTM A 240≥515≥205≥4020285

Механические свойства при высоких температурах

Все эти значения относятся к только AISI 304

.

Физические свойства

Физические свойстваУсловные обозначенияЕдиница измеренияТемператураЗначение
Плотностьd4°C7.93
Температура плавления°C1450
Удельная теплоемкостьcJ/kg.K20°C500
Тепловое расширениеkW/m.K20°C15
Средний коэффициент теплового расширенияα10 -6 .K -10-100°C 0-200°C17.5 18
Электрическое удельное сопротивлениеρΩmm 2 /m20°C0.80
Магнитная проницаемостьμв 0.80 kA/m DC или в/ч AC20°C μ μ разряж.возд.1.02
Модуль упругостиEMPa x 10 320°C200

Сопротивление коррозии

304-е стали имеют хорошее сопротивление к общим коррозийным средам, но не рекомендованы там, где есть риск межкристаллитной коррозии. Они хорошо приспособлены для эксплуатации в пресной воде и городской и сельской среде. Во всех случаях необходима регулярная очистка внешних поверхностей для сохранения их первоначального состояния.

304-е стали имеют хорошее сопротивление различным кислотам:

  • фосфорной кислоте во всех концентрациях при температуре окружающей среды,
  • азотной кислоте до 65 % при температуре 20°C – 50°C,
  • муравьиной и молочной кислоте при комнатной температуре,
  • уксусной кислоте при температуре 20°C – 50°C.

Их рекомендуют для производства оборудования, контактирующего с холодными или горячими пищевыми продуктами: вино, пиво, молоко (кисломолочные продукты), спирт, натуральные плодовые соки, сиропы, патока, и т.д.

Кислотные среды

Температура, °C2080
Концентрация, % к массе10204060801001020406080100
Серная кислота22221222222
Азотная кислота212
Фосфорная кислота212
Муравьиная кислота1221

Код: 0 = высокая степень защиты – Скорость коррозии менее чем 100мкм/год 1 = частичная защита – Скорость коррозии от 100 до 1000мкм/год 2 = нет защиты – Скорость коррозии более чем 1000мкм/год

Атмосферные воздействия

Сравнение 304-й

марки с другими металлами в различных окружающих средах (Скорость коррозии расчитана при 10-летнем воздействии).

Окружающая средаСкорость коррозии (мкм/год)
AISI 304Алюминий-3SУглеродистая сталь
Сельская0.00250.0255.8
Морская0.00760.43234.0
Индустриальная Морская0.00760.68646.2

Устойчивость к коррозии в кипящих химикалиях

Кипящая средаСостояние металлаСкорость коррозии (мм/год)
20%-ая уксусная кислотаОбычный металл Сваренный* (При толщине образца 0.8 мм и диаметре пресса равном 20 мм)
AISI 4302.05 мм
AISI 3042.0 мм

*Limiting drawing ratio – предельный коэффициент вытяжки

Физический смысл проводимости

Использование металлических проводников имеет давнишнюю историю. Ученые и инженеры, работающие в областях науки и техники, использующих электроэнергию, давно определились с материалами для проводов, клемм, контактов, и т. д. Определить самый электропроводный металл в мире помогает физическая величина, называемая электрической проводимостью.

Понятие проводимости обратно электрическому сопротивлению. Количественное выражение проводимости связано с единицей сопротивления, которое в международной системе единиц (СИ) измеряется в Омах. Единица в системе СИ — сименс. Русское обозначение этой единицы — См, интернациональное — S. Электрической проводимостью в 1 См обладает участок электрической сети с сопротивлением в 1 Ом.

Удельное сопротивление металлов и сплавов (при 20° C)

ВеществоУдельное сопротивление мкОм • мм 2 /м
Алюминий0,028
Вольфрам0,055
Железо0,098
Золото0,023
Константан0,44−0,52
Латунь0,025−0,06
Манганин0,42−0,48
Медь0,0175
Молибден0,057
Никелин0,39−0,45
Никель0,100
Олово0,115
Ртуть0,958
Свинец0,221
Серебро0,016
Тантал0,155
Фехраль1,1−1,3
Хром0,027
Цинк0,059
ВеществоКВеществоК
Алюминий0,0042Олово0,0042
Вольфрам0,0048Платина0,004
Константан0,00002Ртуть0,0009
Латунь0,001Свинец0,004
Медь0,0043Серебро0,0036
Манганин0,00003Сталь0,006
Молибден0,0033Тантал0,0031
Никель0,005Хром0,006
Никелин0,0001Фехраль0,0002
Нихром0,0001Цинк0,004

Сплавы (состав в %):

  • Константан (58,8 Cu, 40 Ni, 1,2 Mn)
  • Манганин (85 Cu, 12 Mn, 3 Ni)
  • Нейзильбер (65 Cu, 20 Zn, 15 Ni)
  • Никелин (54 Cu, 20 Zn, 26 Ni)
  • Нихром (67,5 Ni, 15 Cr, 16 Fe, 1,5 Mn)
  • Реонат (84Cu, 12Mn, 4 Zn)
  • Фехраль (80 Fe, 14 Cr, 6 Al)

Удельное сопротивление нихрома

Каждое тело, через которое пропускается электрический ток, автоматически оказывает ему определенное сопротивление. Свойство проводника противостоять электрическому току принято называть электрическим сопротивлением.

Рассмотрим электронную теорию данного явления. При движении по проводнику свободные электроны постоянно встречают на своем пути другие электроны и атомы. Взаимодействуя с ними, свободный электрон теряет часть своего заряда. Таким образом, электроны сталкиваются с сопротивлением со стороны материала проводника. Каждое тело имеет свою атомную структуру, которая оказывает электрическому току разное сопротивление. Единицей сопротивления принято считать Ом. Обозначается сопротивление материалов — R или r.

Чем меньше сопротивление проводника, тем легче электрическому току пройти через это тело. И наоборот: чем выше сопротивление, тем хуже тело проводит электрический ток.

Сопротивление каждого отдельно взятого проводника зависит от свойств материала, из которого он изготовлен. Для точной характеристики электрического сопротивления того или иного материала было введено понятие — удельное сопротивление (нихрома, алюминия ). Удельным считается сопротивление проводника длиной до 1 м, сечение которого — 1 кв. мм. Этот показатель обозначается буквой p. Каждый материал, использующийся в производстве проводника, обладает своим удельным сопротивлением. Для примера рассмотрим удельное сопротивление нихрома и фехрали (более 3 мм):

  • Х15Н60 — 1.13 Ом*мм/м
  • Х23Ю5Т — 1.39 Ом*мм/м
  • Х20Н80 — 1.12 Ом*мм/м
  • ХН70Ю — 1.30 Ом*мм/м
  • ХН20ЮС — 1.02 Ом*мм/м

Удельное сопротивление нихрома, фехрали указывает на основную сферу их применения: изготовление аппаратов теплового действия, бытовых приборов и электронагревательных элементов промышленных печей.

Поскольку нихром и фехраль преимущественно используются в производстве нагревательных элементов, то самая распространенная продукция — нихромовая нить, лента, полоса Х15Н60 и Х20Н80, а также фехралевая проволока Х23Ю5Т.

Как отличается электропроводность разных металлов?

Электронная теория электропроводности металлов получила развитие в исследованиях Паулю Друде. Он сумел открыть такое свойство как сопротивление, которое наблюдается при прохождении электрического тока через проводник. В дальнейшем это позволит классифицировать разные вещества по уровню проводимости. Из полученных результатов легко понять, какой металл подойдет для изготовления того или иного кабеля. Это очень важный момент, так как неправильно подобранный материал может стать причиной возгорания в результате перегрева от прохождения тока избыточного напряжения.

Наибольшей электропроводностью обладает металл серебро. При температуре +20 градусов по Цельсию она составляет 63,3*104 сантиметров-1. Но изготавливать проводку из серебра очень дорого, так как это довольно редкий металл, который используется в основном для производства ювелирных и декоративных украшений или инвестиционных монет.

Металл, обладающий самой высокой электропроводностью среди всех элементов неблагородной группы — медь. Ее показатель составляет 57*104 сантиметров-1 при температуре +20 градусов по Цельсию. Медь является одним из наиболее распространенных проводников, которые используются в бытовых и производственных целях. Она хорошо выдерживает постоянные электрические нагрузки, отличается долговечностью и надежностью. Высокая температура плавления позволяет без проблем работать долгое время в нагретом состоянии.

По распространенности с медью может конкурировать только алюминий, который занимает четвертое место по электропроводности после золота. Он используется в сетях с невысоким напряжением, так как имеет почти вдвое меньшую температуру плавления, чем медь, и не способен выдерживать предельные нагрузки. С дальнейшим распределением мест можно ознакомиться, взглянув на таблицу электропроводности металлов.

Стоит отметить, что любой сплав обладает гораздо меньшей проводимостью, чем чистое вещество. Это связано со слиянием структурной сетки и как следствие нарушением нормального функционирования электронов. Например, при производстве медного провода используется материал с содержанием примесей не более 0,1%, а для некоторых видов кабеля этот показатель еще строже — не более 0,05%. Все приведенные показатели являются удельной электропроводностью металлов, которая рассчитывается как отношение между плотностью тока и величиной электрического поля в проводнике.

Технические характеристики стали

Прежде чем подробно рассматривать удельное сопротивление стали, следует ознакомиться с ее основными физико-механическими свойствами. Благодаря своим качествам, этот материал получил широкое распространение в производственной сфере и других областях жизни и деятельности людей.

Сталь представляет собой сплав железа и углерода, содержащегося в количестве, не превышающем 1,7%. Кроме углерода, сталь содержит определенное количество примесей – кремния, марганца, серы и фосфора. По своим качествам она значительно лучше чугуна, легко поддается закаливанию, ковке, прокату и другим видам обработки. Все виды сталей отличаются высокой прочностью и пластичностью.

По своему назначению сталь подразделяется на конструкционную, инструментальную, а также с особыми физическими свойствами. В каждой из них содержится различное количество углерода, благодаря которому материал приобретает те или иные специфические качества, например, жаропрочность, жаростойкость, устойчивость к действию ржавчины и коррозии.

Особое место занимают электротехнические стали, выпускаемые в листовом формате и применяющиеся в производстве электротехнических изделий. Для получения этого материала производится легирование кремнием, способным улучшить его магнитные и электрические свойства.

Для того чтобы электротехническая сталь приобрела необходимые характеристики, необходимо соблюдение определенных требований и условий. Материал должен легко намагничиваться и перемагничиваться, то есть, обладать высокой магнитной проницаемостью. Такие стали имеют хорошую магнитную индукцию, а их перемагничивание осуществляется с минимальными потерями.

От соблюдения этих требований зависят габариты и масса магнитных сердечников и обмоток, а также коэффициент полезного действия трансформаторов и величина их рабочей температуры. На выполнение условий оказывают влияние многие факторы, в том числе и удельное сопротивление стали.

Классическая теория электропроводности металлов

Основные положения теории электропроводности металлов содержат шесть пунктов. Первый: высокий уровень электропроводности связан с наличием большого числа свободных электронов. Второй: электрический ток возникает путем внешнего воздействия на металл, при котором электроны из беспорядочного движения переходят в упорядоченное.

Третий: сила тока, проходящего через металлический проводник, рассчитывается по закону Ома. Четвертый: различное число элементарных частиц в кристаллической решетке приводит к неодинаковому сопротивлению металлов. Пятый: электрический ток в цепи возникает мгновенно после начала воздействия на электроны. Шестой: с увеличением внутренней температуры металла растет и уровень его сопротивления.

Природа электропроводности металлов объясняется вторым пунктом положений. В спокойном состоянии все свободные электроны хаотическим образом вращаются вокруг ядра. В этот момент металл не способен самостоятельно воспроизводить электрические заряды. Но стоит лишь подключить внешний источник воздействия, как электроны мгновенно выстраиваются в структурированной последовательности и становятся носителями электрического тока. С повышением температуры электропроводность металлов снижается.

Это связано с тем, что слабеют молекулярные связи в кристаллической решетке, элементарные частицы начинают вращаться в еще более хаотичном порядке, поэтому построение электронов в цепь усложняется. Поэтому необходимо принимать меры по недопущению перегрева проводников, так как это негативно сказывается на их эксплуатационных свойствах. Механизм электропроводности металлов невозможно изменить ввиду действующих законов физики. Но можно нивелировать негативные внешние и внутренние воздействия, которые мешают нормальному протеканию процесса.

Удельное сопротивление и другие показатели

Величина удельного электрического сопротивления представляет собой отношение напряженности электрического поля в металле и плотности тока, протекающего в нем. Для практических расчетов используется формула: в которой ρ является удельным сопротивлением металла (Ом*м), Е – напряженностью электрического поля (В/м), а J – плотностью электротока в металле (А/м 2 ). При очень большой напряженности электрического поля и низкой плотности тока, удельное сопротивление металла будет высоким.

Существует еще одна величина, называемая удельной электропроводностью, обратная удельному сопротивлению, указывающая на степень проводимости электрического тока тем или иным материалом. Она определяется по формуле и выражается в единицах См/м – сименс на метр.

Удельное сопротивление тесно связано с электрическим сопротивлением. Однако они имеют различия между собой. В первом случае – это свойство материала, в том числе и стали, а во втором случае определяется свойство всего объекта. На качество резистора влияет сочетание нескольких факторов, прежде всего, формы и удельного сопротивления материала, из которого он изготовлен. Например, если для изготовления проволочного резистора использовалась тонкая и длинная проволока, то его сопротивление будет больше, чем у резистора, изготовленного из толстой и короткой проволоки одинакового металла.

В качестве другого примера можно привести резисторы из проволоки с одинаковым диаметром и длиной. Однако, если в одном из них материал имеет высокое удельное сопротивление, а в другом низкое, то соответственно в первом резисторе электрическое сопротивление будет выше, чем во втором.

Зная основные свойства материала, можно использовать удельное сопротивление стали для определения величины сопротивления стального проводника. Для вычислений, кроме удельного электрического сопротивления потребуется диаметр и длина самого провода. Расчеты выполняются по следующей формуле: , в которой R является сопротивлением проводника (Ом), ρ – удельным сопротивлением стали (Ом*м), L – соответствует длине провода, А – площади его поперечного сечения.

Существует зависимость удельного сопротивления стали и других металлов от температуры. В большинстве расчетов используется комнатная температура – 20 0 С. Все изменения под влиянием этого фактора учитываются с помощью температурного коэффициента.

Материалы высокой проводимости

К наиболее широкораспрстраненным материалам высокой проводимости следует отнести медь и алюминий (Сверхпроводящие материалы, имеющие типичное сопротивление в 10-20 раз ниже обычных проводящих материалов (металлов) рассматриваются в разделе Сверхпроводимость).

Медь

Преимущества меди, обеспечивающие ей широкое применение в качестве проводникового материала, следующие:

  1. малое удельное сопротивление;
  2. достаточно высокая механическая прочность;
  3. удовлетворительная в большинстве случаев применения стойкость по отношению к коррозии;
  4. хорошая обрабатываемость: медь прокатывается в листы, ленты и протягивается в проволоку, толщина которой может быть доведена до тысячных долей миллиметра;
  5. относительная легкость пайки и сварки.

Медь получают чаще всего путем переработки сульфидных руд. После ряда плавок руды и обжигов с интенсивным дутьем медь, предназначенная для электротехнических целей, обязательно проходит процесс электролитической очистки.

В качестве проводникового материала чаще всего используется медь марок М1 и М0. Медь марки М1 содержит 99.9% Cu, а в общем количестве примесей (0.1%) кислорода должно быть не более 0,08%. Присутствие в меди кислорода ухудшает ее механические свойства. Лучшими механическими свойствами обладает медь марки М0, в которой содержится не более 0.05% примесей, в том числе не свыше 0.02% кислорода.

Медь является сравнительно дорогим и дефицитным материалом, поэтому она все шире заменяется другими металлами, особенно алюминием.

В отдельных случаях применяются сплавы меди с оловом, кремнием, фосфором, бериллием, хромом, магнием, кадмием. Такие сплавы, носящие название бронз, при правильно подобранном составе имеют значительно более высокие механические свойства, чем чистая медь.

Алюминий

Алюминий является вторым по значению после меди проводниковым материалом. Это важнейший представитель так называемых легких металлов: плотность литого алюминия около 2.6, а прокатанного — 2.7 Мг/м3. Т.о., алюминий примерно в 3.5 раза легче меди. Температурный коэффициент расширения, удельная теплоемкость и теплота плавления алюминия больше, чем меди. Вследствие высоких значений удельной теплоемкости и теплоты плавления для нагрева алюминия до температуры плавления и перевода в расплавленное состояние требуется большая затрата тепла, чем для нагрева и расплавления такого же количества меди, хотя температура плавления алюминия ниже, чем меди.

Алюминий обладает пониженными по сравнению с медью свойствами — как механическими, так и электрическими. При одинаковом сечении и длине электрическое сопротивление алюминиевого провода в 1.63 раза больше, чем медного. Весьма важно, что алюминий менее дефицитен, чем медь.

Для электротехнических целей используют алюминий, содержащий не более 0.5% примесей, марки А1. Еще более чистый алюминий марки АВ00 (не более 0.03% примесей) применяют для изготовления алюминиевой фольги, электродов и корпусов электролитических конденсаторов. Алюминий наивысшей чистоты АВ0000 имеет содержание примесей не более 0ю004%. Добавки Ni, Si, Zn или Fe при содержании их 0.5% снижают γ отожженного алюминия не более, чем на 2-3%. Более заметное действие оказывают примеси Cu, Ag и Mg, при том же массовом содержании снижающие γ алюминия на 5-10%. Очень сильно снижают электропроводность алюминия Ti и Mn.

Алюминий весьма активно окисляется и покрывается тонкой оксидной пленкой с большим электрическим сопротивлением. Эта пленка предохраняет металл от дальнейшей коррозии.

Алюминиевые сплавы обладают повышенной механической прочностью. Примером такого сплава является альдрей, содержащий 0.3-0.5% Mg, 0.4-0.7% Si и 0.2-0.3% Fe. В альдрее образуется соединение Mg2Si, которое сообщает высокие механические свойства сплаву.

Железо и сталь

Железо (сталь) как наиболее дешевый и доступный металл, обладающий к тому же высокой механической прочностью, представляет большой интерес для использования в качестве проводникового материала. Однако даже чистое железо имеет значительно более высокое сравнительно с медью и алюминием удельное сопротивление; ρ стали, т.е. железа с примесью углерода и других элементов, еще выше. Обычная сталь обладает малой стойкостью коррозии: даже при нормальной температуре, особенно в условиях повышенной влажности, она быстро ржавеет; при повышении температуры скорость коррозии резко возрастает. Поэтому поверхность стальных проводов должна быть защищена слоем более стойкого материала. Обычно для этой цели применяют покрытие цинком.

В ряде случаев для уменьшения расхода цветных металлов применяют так называемый биметалл. Это сталь, покрытая снаружи слоем меди, причем оба металла соединены друг с другом прочно и непрерывно.

Натрий

Весьма перспективным проводниковым материалом является металлический натрий. Натрий может быть получен электролизом расплавленного хлористого натрия NaCl в практически неограниченных количествах. Из сравнения свойств натрия со свойствами других проводниковых металлов видно, что удельное сопротивление натрия примерно в 2.8 раза больше ρ меди и в 1.7 раз больше ρ алюминия, но благодаря чрезвычайно малой плотности натрия (плотность его почти в 9 раз меньше плотности меди), провод из натрия при данной проводимости на единицу длины должен быть значительно легче, чем провод из любого другого металла. Однако натрий чрезвычайно активен химически (он интенсивно окисляется на воздухе, бурно реагирует с водой), почему натриевый провод должен быть защищен герметизирующей оболочкой. Оболочка должна придавать проводу необходимую механическую прочность, так как натрий весьма мягок и имеет малый предел прочности при деформациях.

Литература по удельному сопротивлению проводников

  1. Кузнецов М. И., «Основы электротехники» – 9-е издание, исправленное – Москва: Высшая школа, 1964 – 560с.
  2. Бачелис Д. С., Белоруссов Н. И., Саакян А. Е. Электрические кабели, провода и шнуры. Справочник. — М.: Энергия, 1971.
  3. Гершун А. Л. Кабель // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
  4. Р. Лакерник, Д. Шарле. От меди к стеклу // Наука и жизнь. — 1986. — Вып. 08. — С. 50—54, 2-3 стр. цветной вкладки.

ТОЭЭ ТЭЦ РиЭКТ Метрология Реальная физика Сверхпроводимость Теория проводимости

Знаете ли Вы,

как разрешается парадокс Ольберса? (Фотометрический парадокс, парадокс Ольберса — это один из парадоксов космологии, заключающийся в том, что во Вселенной, равномерно заполненной звёздами, яркость неба (в том числе ночного) должна быть примерно равна яркости солнечного диска. Это должно иметь место потому, что по любому направлению неба луч зрения рано или поздно упрется в поверхность звезды. Иными словами парадос Ольберса заключается в том, что если Вселенная бесконечна, то черного неба мы не увидим, так как излучение дальних звезд будет суммироваться с излучением ближних, и небо должно иметь среднюю температуру фотосфер звезд. При поглощении света межзвездным веществом, оно будет разогреваться до температуры звездных фотосфер и излучать также ярко, как звезды. Однако в дело вступает явление «усталости света», открытое Эдвином Хабблом, который показал, что чем дальше от нас расположена галактика, тем больше становится красным свет ее излучения, то есть фотоны как бы «устают», отдают свою энергию межзвездной среде. На очень больших расстояниях галактики видны только в радиодиапазоне, так как их свет вовсе потерял энергию идя через бескрайние просторы Вселенной. Подробнее читайте в FAQ по эфирной физике.

Металлы с высокой электопроводностью

Электропроводность щелочных металлов находится на высоком уровне, так как их электроны слабо привязаны к ядру и легко выстраиваются в нужной последовательности. Но эта группа отличается невысокими температурами плавления и огромной химической активностью, что в большинстве случаев не позволяет использовать их для изготовления проводов.

Металлы с высокой электропроводностью в открытом виде очень опасны для человека. Прикосновение к оголенному проводу приведет к получению электрического ожога и воздействию мощного разряда на все внутренние органы. Зачастую это влечет мгновенную смерть. Поэтому для безопасности людей используются специальные изоляционные материалы.

В зависимости от сферы применения они могут быть твердыми, жидкими и газообразными. Но все типы предназначены для одной функции — изоляции электрического тока внутри цепи, чтобы он не мог оказывать воздействие на внешний мир. Электропроводность металлов используется практически во всех сферах современной жизни человека, поэтому обеспечение безопасности является первоочередной задачей.

Никого сегодня не удивляет, что, прикоснувшись к клавише выключателя, мы видим загоревшуюся лампочку. Зачастую мы даже не задумываемся, что все подобные действия основаны на целой серии Одно их таких крайне любопытных явлений — электропроводность металлов, которая обеспечивает протекание электрического тока.

Для начала, наверное, следует определиться, о чем вообще идет речь. Итак, электропроводностью называют способность вещества пропускать Причем разные вещества обладают этой способностью в разной степени. По степени электропроводности вещества разделяются на проводники, полупроводники и диэлектрики.

Если посмотреть экспериментальные данные, полученные исследователями за время изучения электрического тока, то станет ясно, что проводимость металлов самая высокая. Это же подтверждает повседневная практика, когда для передачи электрического тока используют металлические провода. Именно металлы в первую очередь выступают проводниками электрического тока. И объяснение этому можно найти в электронной теории металлов.

Согласно последней, проводник представляет собой кристаллическую решетку, узлы которой занимают атомы. Они расположены очень плотно и связаны с соседними подобными атомами, поэтому остаются практически в узлах кристаллической решетки. Чего нельзя сказать об электронах, расположенных на внешних оболочках атомов. Эти электроны могут свободно беспорядочно двигаться, образуя так называемый “электронный газ”. Вот электронная проводимость металлов и основывается на таких электронах.

В качестве доказательства того, что природа электрического тока обусловлена электронами, можно вспомнить опыт немецкого физика Рикке, поставленный в 1901 году. Он взял два медных и один алюминиевый цилиндры с тщательно отполированными торцами, поставил один на другой и пропускал через них электрический ток. По замыслу экспериментатора, если электропроводность металлов обусловлена атомами, то происходил бы перенос вещества. Однако после пропускания электрического тока в течение года масса цилиндров не изменилась.

Из этого результата следовал вывод, что электропроводность металлов вызвана какими-то частицами, присущими всем проводникам. На эту роль как раз и подходил электрон, который к этому моменту уже был открыт. В дальнейшем провели еще несколько остроумных опытов, и все они подтвердили, что электрический ток обусловлен движением электронов.

В соответствии с современными представлениями о металлов, в ее узлах располагаются ионы, а электроны относительно свободно перемещаются между ними. Именно большое количество таких электронов и обеспечивает высокую электропроводность металлов. При наличии небольшой на концах проводника эти свободные электроны начинают перемещаться, что и вызывает протекание электрического тока.

Здесь надо отметить, что проводимость сильно зависит от температуры. Так, при росте температуры проводимость металлов уменьшается, и наоборот, увеличивается при понижении температуры, вплоть до В тоже время следует помнить, что хотя проводимостью обладают все металлы, ее величина для каждого из них своя. Лучшей проводимостью из наиболее широко распространенных и применяемых в электротехнике металлов обладает медь.

Итак, приведенный материал дает понятие, что собой представляет электропроводность металлов, объясняет природу электрического тока и поясняет, чем она вызвана. Дано описание кристаллической решетки металлов и влияние некоторых внешних факторов на проводимость.

Электронная проводимость металлов

В начале XX века была создана классическая электронная теория проводимости металлов (П. Друде, 1900 г., Х.Лоренц, 1904 г.), которая дала простое и наглядное объяснение большинства электрических и тепловых свойств металлов. Рассмотрим некоторые положения этой теории.

Свободные электроны

Металлический проводник состоит из:

1) положительно заряженных ионов, колеблющихся около положения равновесия, и

2) свободных электронов, способных перемещаться по всему объему проводника.

Таким образом, электрические свойства металлов обусловлены наличием в них свободных электронов с концентрацией порядка 1028 м–3, что примерно соответствует концентрации атомов. Эти электроны называются электронами проводимости. Они образуются путем отрыва от атомов металлов их валентных электронов. Такие электроны не принадлежат какому-то определенному атому и способны перемещаться по всему объему тела. В металле в отсутствие электрического поля электроны проводимости хаотически движутся и сталкиваются, чаще всего с ионами кристаллической решетки (рис. 1). Совокупность этих электронов можно приближенно рассматривать как некий электронный газ, подчиняющийся законам идеального газа. Средняя скорость теплового движения электронов при комнатной температуре составляет примерно 105 м/с.

Рисунок 1

Электрический ток в металлах

Ионы кристаллической решетки металла не принимают участие в создании тока. Их перемещение при прохождении тока означало бы перенос вещества вдоль проводника, что не наблюдается. Например, в опытах Э. Рикке (1901 г.) масса и химический состав проводника не изменялся при прохождении тока в течении года.

Экспериментальное доказательство того, что ток в металлах создается свободными электронами, было дано в опытах Л.И. Мандельштама и Н. Д. Папалекси (1912 г., результаты не были опубликованы), а также Т. Стюарта и Р. Толмена (1916 г.). Они обнаружили, что при резкой остановке быстро вращающейся катушки в проводнике катушки возникает электрический ток, создаваемый отрицательно заряженными частицами — электронами.

Следовательно, электрический ток в металлах — это направленное движением свободных электронов.

Так как электрический ток в металлах образуют свободные электроны, то проводимость металлических проводников называется электронной проводимостью.

Электрический ток в металлах возникает под действием внешнего электрического поля. На электроны проводимости, находящиеся в этом поле, действует электрическая сила, сообщающая им ускорение, направленное в сторону, противоположную вектору напряженности поля. В результате электроны приобретают некоторую добавочную скорость (ее называют дрейфовой). Эта скорость возрастает до тех пор, пока электрон не столкнется с атомом кристаллической решетки металла. При таких столкновениях электроны теряют свою избыточную кинетическую энергию, передавая ее ионам. Затем электроны снова разгоняются электрическим полем, снова тормозятся ионами и т.д.Средняя скорость дрейфа электронов очень мала, около 10–4 м/с.

Скорость распространения тока и скорость дрейфа не одно и то же. Скорость распространения тока равна скорости распространения электрического поля в пространстве, т.е. 3⋅108 м/с.

При столкновении с ионами электроны проводимости передают часть кинетической энергии ионам, что приводит к увеличению энергии движения ионов кристаллической решетки, а, следовательно, и к нагреванию проводника.

Сопротивление металлов

Сопротивление металлов объясняется столкновениями электронов проводимости с ионами кристаллической решетки. При этом, очевидно, чем чаще происходят такие столкновения, т. е. чем меньше среднее время свободного пробега электрона между столкновениями τ, тем больше удельное сопротивление металла.

В свою очередь, время τ зависит от расстояния между ионами решетки, амплитуды их колебаний, характера взаимодействия электронов с ионами и скорости теплового движения электронов. С ростом температуры металла амплитуда колебаний ионов и скорость теплового движения электронов увеличиваются. Возрастает и число дефектов кристаллической решетки. Все это приводит к тому, что при увеличении температуры металла столкновения электронов с ионами будут происходить чаще, т.е. время τ уменьшается, а удельное сопротивление металла увеличивается.

Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями: