Одной из наиболее распространенных причин неисправности радиоэлектронной техники является поломка одного или нескольких конденсаторов, которые составляют неотъемлемую часть ее платы. И чтобы выяснить, какой же именно конденсатор оказался слабым звеном, необходимо проверить их работоспособность. В этой статье описывается, как прозванивают конденсатор. Независимо от того, занимаетесь ли вы электронной аппаратурой профессионально или вы просто любитель, вам это вполне под силу. Для этого вам понадобится мультиметр. Ниже мы рассмотрим, как проверить конденсатор мультиметром самостоятельно.
Виды конденсаторов и их проверка
Прежде чем разобраться, как мультиметром прозвонить конденсатор, давайте выясним, какие виды конденсаторов существуют. Все конденсаторы делятся на полярные и неполярные. Разница между ними заключается в том, что полярные, как можно догадаться из названия, имеют полярность. Проверять их нужно строго соответствующим образом: «плюс» к «плюсу», «минус» к «минусу», так как в противном случае они придут в негодность и могут взорваться. Все полярные конденсаторы являются электролитическими. Если конденсатор еще советского производства, то при взрыве электролит может попасть вам на кожу. В современных конденсаторах для таких случаев предусмотрено специальное сечение на поверхности, которое разрывается в определенном направлении и не дает проводящему веществу разбрызгаться в разные стороны.
Каким образом выполнить проверку, зависит от характера поломки, так как мультиметром проверить конденсатор на работоспособность можно двумя способами: в режиме замера сопротивления его диэлектрика и измеряя его емкость.
Способ № 2 – Обойдемся без приборов
Менее качественный способ проверки работоспособности емкостного элемента – с помощью самодельной прозвонки в виде лампочки и двух проводов. Таким способом можно только проверить конденсатор на короткое замыкание. Как и в случае с отверткой, сначала заряжаем деталь, после чего выводами пробника прикасаемся к ножкам. Если кондер работает, произойдет искра, которая моментально его разрядит. О том, как сделать контрольную лампу электрика, мы также рассказывали.
Пробой конденсатора
Наиболее распространенной проблемой конденсаторов является пробой диэлектрика. Диэлектрик – это слой материала между двумя проводниками внутри конденсатора, который имеет большое сопротивление, чтобы не допустить протекания тока между проводниками.
В исправном конденсаторе допускается небольшое пропускание тока через этот изолятор, это называется «ток утечки», и он ничтожно мал. При пробое диэлектрика его сопротивление резко падает, и, по сути, он превращается в обыкновенный проводник. Причиной такого пробоя, как правило, является резкий перепад напряжения в сети, к которой подключено оборудование. К характерным признакам пробоя относятся вздутие корпуса конденсатора, его потемнение и появление черных пятен. Перед тем как проверить конденсатор на исправность, осмотрите его визуально на предмет внешних дефектов.
Что делать в случае пробоя
Самая распространенная проблема, которая возникает с конденсаторами – это появление пробоя на диэлектрике. Диэлектрики являются своеобразным слоем изоляционного материала с большим сопротивлением, расположенного между одним и вторым проводником, препятствующего протеканию тока между ними.
У исправных элементов допускается небольшое просачивание тока сквозь изоляционное покрытие, именуемое как «ток утечки». Если в диэлектрике возникает пробой, то происходит резкое снижение сопротивления, и он становится обыкновенным проводником. Пробой может возникнуть в результате резкого перепада напряжения в электросети, от которой работает техника. Характерный признак пробоя: вздувшийся корпус устройства, потемневшая поверхность и черные пятна на нем. Перед тем, как проверить конденсаторы мультиметром на факт исправности, стоит осмотреть его визуальным методом, чтобы определить возможные внешние дефекты.
Проверка неполярного конденсатора в режиме омметра
Проверка мультиметром сопротивления диэлектрика в конденсаторе осуществляется в режиме омметра. В неполярных конденсаторах диэлектрик может быть выполнен из стекла, керамики, бумаги или даже в виде воздушной прослойки. Таким образом обеспечивается крайне высокое сопротивление, и в исправном конденсаторе цифровой мультиметр покажет фактически бесконечную величину. Если же электрический пробой имеет место, то уровень сопротивления будет в пределах нескольких Ом, максимум нескольких десятков.
Перед тем как мультиметром прозвонить конденсатор, включите на измерительном приборе соответствующий режим, выставив на нем максимально возможный уровень измерения сопротивления. Подведите к выводам конденсаторы щупы мультиметра и посмотрите на табло: если конденсатор в порядке, то там должна появиться единичка, что говорит о том, что сопротивление выше установленного максимума. Если же на дисплее мультиметра высветится какое-то конкретное значение, меньшее чем измерительный максимум, то это может быть свидетельством неисправности проверяемого конденсатора.
Помните о технике безопасности и не держитесь одновременно и за щупы прибора и за выводы конденсатора, так как из-за меньшего сопротивления электрический ток пойдет через ваше тело.
Типы транзисторов
Стандартные современные транзисторы отличаются структурой, принципом действия и основными параметрами, в соответствии с которыми они могут быть представлены:
- Биполярными устройствами, которые отличаются наличием трёх слоёв в виде «базы», «коллектора» и «эмиттера». Полупроводниковый материал отвечает за протекание тока исключительно в одном направлении, определяемым видом перехода. Характерной особенностью данного типа транзистора является подача в базу токов незначительной величины.
- Полевыми или униполярными устройствами, которые отличаются наличием трёх выводов в виде «затвора», «стока» и «истока». Показатели сопротивления зоны проводника напрямую зависят от уровня напряжения, прилагаемого к затворной части. В соответствии с проводимостью кристалла выпускаются устройства, имеющие p-канал и n-канал.
Электрические или электронные компоненты, представленные конденсатором, в отличие от транзисторов включают в себя пару проводниковых обкладок, разделенных диэлектрическим слоем.
Существует огромное количество разновидностей конденсаторных приборов, которые, чаще всего, различаются материалом обкладок и видовыми особенностями диэлектрика:
- бумажного и металлобумажного типа;
- электролитические разновидности;
- полимерного или пленочного типа;
- керамического типа;
- с наличием диэлектрика воздушного типа.
Виды транзисторов
Кроме всего прочего, конденсаторные устройства могут быть полярными и неполярными. Второй вариант используется для обеспечения периодического, непродолжительного включения в цепь с переменными токовыми показателями. Полярные электролитические конденсаторы обладают значительно меньшими размерами, чем неполярные устройства с аналогичной емкостью.
Если все транзисторы отвечают за протекание тока в соответствии с управляющим сигналом, то конденсаторы накапливают и затем отдают электрический ток, поэтому часто применяются для выравнивания скачков напряжения.
Проверка полярного конденсатора в режиме омметра
По сравнению с неполярными конденсаторами в полярных сопротивление диэлектрика на порядок меньше, поэтому максимум сопротивления на мультиметре нужно выставлять соответствующее. Большинство таких конденсаторов имеют не менее 100 кОм сопротивления, особо мощные и до 1 мОма. Перед тем как мультиметром прозвонить конденсатор, замкните выводы накопителя, чтобы разрядить его полностью.
Установив соответствующий предел измерения, подключите щупы прибора к конденсатору, соблюдая при этом полярность. Электролитические конденсаторы имеют сравнительно большую емкость, и поэтому при подключении они тут же начинают заряжаться. В течение того времени, пока идет зарядка, сопротивление будет прямо пропорционально расти, что будет отображаться на экране прибора. Конденсатор можно считать исправным в большинстве случаев, когда сопротивление переваливает за отметку в 100 кОм.
Как узнать ёмкость конденсатора
В большинстве случаев емкость прибора указывается в маркировке на корпусе элемента. Однако зачастую существует необходимость определения емкости электронных компонентов с недостаточно четко промаркированными данными.
В большинстве мультиметров имеется 5 пределов измерения:
- 20 нФ (20nF)
- 200 нФ (200nF)
- 2 мкФ (2uF)
- 20 мкФ (20uF)
- 200 мкФ (200uF)
Такой диапазон измерения емкости элементов позволяет проводить тестирование, как неполярных конденсаторов, так и полярных, то есть электролитических. Сам процесс проведения тестирования выглядит так:
- Контрольные щупы прибора переключаются к специальным гнездам измерения емкости (гнезда Сх).
Полученное значение и показывает емкость электронного компонента схемы.
В отдельных мультиметрах, вместо специальных гнезд на рабочую панель выведены металлические пластины. Проверка элемента проводится путем присоединения выводов к платинам с соблюдением полярности.
Как мультиметром прозвонить конденсатор (аналоговый измеритель)
Ту же самую процедуру можно проделать при помощи аналогового (стрелочного) измерителя. Емкость электролитического конденсатора можно определить по скорости движения стрелки прибора в сторону максимума. Чем медленнее двигается стрелка, тем дольше заряжается конденсатор и тем, соответственно, больше его емкость. Если емкость составляет от 1 до 100 микрофарадов (мкФ), стрелка достигнет правого края циферблата практически моментально. При емкости от 1000 мкФ ее путь может занять несколько секунд.
Как проверить обмотку электродвигателя на статоре: общие рекомендации
Трехфазный статор имеет три встроенные обмотки. Из него выходит шесть проводов. В отдельных конструкциях можно встретить 3 или 4 вывода, когда соединение треугольник или звезда собрано внутри корпуса. Но так делается редко.
Определить принадлежность выведенных концов обмоткам позволяет прозвонка их мультиметром в режиме омметра. Надо просто один щуп поставить на произвольный вывод, а другим — поочередно замерять активное сопротивление на всех остальных.
Пара проводов, на которой будет обнаружено сопротивление в Омах, будет относиться к одной обмотке. Их следует визуально отделить и пометить, например, цифрой 1. Аналогично поступают с другими проводами.
Здесь надо хорошо представлять, что по закону Ома ток в обмотке создается под действием приложенного напряжения, которому противодействует полное сопротивление, а не активное, замеряемое нами.
Учитываем, что обмотки наматываются из одного провода с одинаковым числом витков, создающих равное индуктивное сопротивление. Если провод в процессе работы будет закорочен или оборван, то его активная составляющая, как и полная величина, нарушится.
Межвитковое замыкание тоже сказывается на величине активной составляющей.
Однофазный асинхронный двигатель: особенности статорных обмоток
Такие модели создаются с двумя обмотками: рабочей и пусковой, как, например, у стиральной машины. Активное сопротивление у рабочей цепочки в подавляющем большинстве случаев всегда меньше.
Поэтому когда из статора выведено всего три конца, то это означает, что между всеми ими надо измерять сопротивление. Результаты трех замеров покажут:
- меньшая величина — рабочую обмотку;
- средняя — пусковую;
- большая — последовательное соединение первых двух.
Как найти начало и конец каждой обмотки
Метод позволяет всего лишь выявить общее направление навивки каждого провода. Но для практической работы электродвигателя этого более чем достаточно.
Статор рассматривается как обычный трансформатор, что в принципе и есть на самом деле: в нем протекают те же процессы.
Для работы потребуется небольшой источник постоянного напряжения (обычная батарейка) и чувствительный вольтметр. Лучше стрелочный. Он более наглядно отображает информацию. На цифровом мультиметре сложно отслеживать смену знака быстро меняющегося импульса.
К одной обмотке подключают вольтметр, а на другую кратковременно подают напряжение от батарейки и сразу его снимают. Оценивают отклонение стрелки.
Если при подаче «плюса» в первую обмотку во второй трансформировался электромагнитный импульс, отклонивший стрелку вправо, а при его отключении наблюдается движение ее влево, то делается вывод, что провода имеют одинаковое направление, когда «+» прибора и источника совпадают.
В противном случае надо переключить вольтметр или батарейку — то есть поменять концы одной из обмоток. Следующая третья цепочка проверяется аналогично.
А далее я просто взял свой рабочий асинхронный движок с мультиметром и показываю на нем фотографиями методику его оценки.
Личный опыт: проверка статорных обмоток асинхронного электродвигателя
Для статьи я использовал свой новый карманный мультиметр Mestek MT102. Заодно продолжаю выявлять недостатки его конструкции, которые уже показал в статье раньше.
Электрические проверки выполнялись на трехфазном двигателе, подключенном в однофазную сеть через конденсаторы по схеме звезды.
Общая оценка состояния изоляции обмоток
Поскольку на клеммных выводах все обмотки уже собраны вместе, то замеры начал с проверки сопротивления их изоляции относительно корпуса. Один щуп стоит на клеммнике сборки нуля, а второй — на гнезде винта крепления крышки. Мой Mestek показал отсутствие утечек.
Другого результата я и не ожидал. Этот способ замера состояния изоляции очень неточный и большинство повреждений он выявить просто не сможет: питания батареек 3 вольта явно недостаточно.
Но все же лучше делать хоть так, чем полностью пренебрегать такой проверкой.
Для полноценного анализа диэлектрического слоя проводников необходимо использовать высокое напряжение, которое вырабатывают мегаомметры. Его величина обычно начинается от 500 вольт и выше. У домашнего мастера таких приборов нет.
Можно обойтись косвенным методом, используя бытовую сеть. Для этого на клеммы обмотки и корпуса подают напряжение 220 вольт через контрольную лампу накаливания мощностью порядка 75 ватт (токоограничивающее сопротивление, исключающее подачу потенциала фазы на замыкание) и последовательно включенный амперметр.
Читать также: Трехфазный асинхронный двигатель в однофазной сети
Ожидаемый ток утечки через нормальную изоляцию не превысит микроамперы или их доли, но рассчитывать надо на аварийный режим и начинать замеры на пределах ампер. Измерив ток и напряжение, вычисляют сопротивление изоляции.
Используя этот способ, учитывайте, что:
- на корпус движка подается полноценная фаза: он должен располагаться на диэлектрическом основании, не иметь контактов с другими предметами;
- даже временно собираемая схема требует надежной изоляции всех концов и проводов, прочного крепления всех зажимов;
- колба лампы может разбиться: ее надо держать в защитном чехле.
Замер активного сопротивления обмоток
Здесь требуется разобрать схему подключения проводов и снять все перемычки. Перевожу мультиметр в режим омметра и определяю активное сопротивление каждой обмотки.
Прибор показал 80, 92 и 88 Ом. В принципе большой разницы нет, а отклонения на несколько Ом я объясняю тем, что крокодил не обеспечивает качественный электрический контакт. Создается разное переходное сопротивление.
Это один из недостатков этого мультиметра. Щуп плохо входит в паз крокодила, да к тому же тонкий металл зажима раздвигается. Мне сразу пришлось его поджимать пассатижами.
Замер сопротивления изоляции между обмотками
Показываю этот принцип потому, что его надо выполнять между каждыми обмотками. Однако вместо омметра нужен мегаомметр или проверяйте, в крайнем случае, бытовым напряжением по описанной мной выше методике.
Мультиметр же может ввести в заблуждение: покажет хорошую изоляцию там, где будут созданы скрытые дефекты.
Как мультиметром прозвонить конденсатор: инструкция по проверке емкости накопителя
Хотя конденсаторы часто проверяют омметром, более надежным способом выяснить его исправность считается измерение емкости. Повышенная утечка (в том числе из-за пробоя) в электролитическом конденсаторе приводит к частичной потере емкости, и ее действительная величина уже не соответствует заявленной на корпусе накопителя. Измеряя сопротивление конденсатора, очень трудно определить данный дефект, для этого требуется измеритель емкости. Следует иметь в виду, что далеко не у всех мультиметров имеется такая функция, поэтому убедитесь в том, что ваш прибор способен выполнять такое измерение.
Прежде чем проверять таким образом электролитический конденсатор, его обязательно необходимо полностью разрядить. Заряженный конденсатор может попросту испортить ваш мультиметр. Особенно это касается полярных накопителей с высоким рабочим напряжением и большой емкостью. Как правило, такие конденсаторы используются в импульсных блоках в качестве фильтрующих накопителей.
Как проверить пленочный конденсатор мультиметром
Основные неисправности пленочных устройств могут быть представлены:
- пожением номинальных показателей емкости в процессе высыхания;
- превышением заданных значений тока утечки;
- повышением потерь активного типа внутри цепи;
- появлением короткого замыкания на обкладках;
- утерей контакта или обрывом.
Выполненные на разные пределы напряжения пленочные устройства могут применяться не только в цепях с постоянными показателями тока, но и внутри фильтров или стандартных резонансных схем.
Емкость и работоспособность конденсатора
Проверка устройства на исправность выполняется мультиметром, установленным на режим тестирования ёмкости. В стрелочных моделях тестеров отслеживается уровень отклонения стрелки или «скачок» с возвратом на «0».
В этом случае можно предположить наличие пробоя, который часто является основной причиной короткого замыкания в цепи. При достаточно легком отклонении стрелки, не достигающей показателей «∞», диагностируется токовая утечка при недостаточной емкости элемента.
Неэффективная работоспособность прибора с малым уровнем мощности при токовой утечке не позволяет устройству реализовать свой потенциал на 100%, поэтому использование такой модели конденсаторного элемента является нецелесообразным.
Разрядка конденсатора
Для разрядки низковольтных конденсаторов достаточно просто закоротить их выводы, но в случае с высоковольтными и большой емкостью к выводам следует подключить 5-10-килоомный резистор. Резистор необходим, чтобы избежать возникновения искры во время замыкания. Помните о безопасности и ни в коем случае не прикасайтесь к выводам конденсатора, иначе замыкание произойдет на вас.
Как разрядить конденсатор в микроволновке
Разрядить его возможно такими способами:
Отключив от электросети, конденсатор разряжают, осмотрительно замкнув отверткой его клеммы. Хороший разряд свидетельствует о его исправном состоянии. Такой способ разрядки самый распространенный, хотя некоторые считают его опасным, способным нанести вред и разрушить приспособление.
Разряд конденсатора отвертками
У высоковольтного конденсатора есть интегрированный резистор. Он работает для разряда детали. Приспособление располагается под высочайшим напряжением (2 кВ), и потому есть необходимость в его разряде в основном на корпус. Детали с ёмкостью более 100 мкФ и напряжением от 63V лучше разряжать через резистор 5-20 килоОм и 1 – 2 Вт. Для чего концы резистора объединяют с клеммами приспособления на некоторое количество секунд, чтобы снять заряд. Это необходимо для предотвращения возникновение сильной искры. Потому надо побеспокоиться об личной безопасности.
Обрыв конденсатора
Обрыв – довольно редкая для конденсаторов неисправность. Как правило, он возникает при механических повреждениях накопителя. В результате обрыва конденсатор полностью теряет свою накопительную функцию и имеет нулевую емкость. Фактически он превращается в два изолированных друг от друга проводника. Обнаружить обрыв при помощи омметра практически невозможно. Своеобразным симптомом обрыва в полярных электролитических конденсаторах при измерении сопротивления является отсутствие какого-либо изменения в показаниях прибора. Так как исправный неполярный конденсатор малой емкости имеет высокое сопротивление, проверить его на обрыв, таким образом, не представляется возможным. Единственный выход – измерение емкости.
Проверка на отсутствие внутреннего обрыва
Обрыв — распространенный дефект конденсатора, при котором один из его электродов теряет электрическое соединение с обкладкой и фактически превращается в короткий, ни с чем не соединенный (висящий в воздухе), проводник.
Чаще всего обрыв происходит из-за превышения рабочего напряжения конденсатора. Этим грешат не только электролитические конденсаторы, но и специальные помехоподавляющие конденсаторы типа Y (они, кстати говоря, специально так спроектированы, чтобы уходить в отрыв, а не в КЗ).
Конденсатор с внутренним обрывом внешне ничем не отличается от исправного, кроме случаев, когда ножку физически оторвали от корпуса
Разумеется, в случае отрыва одного из выводов от обкладки конденсатора, емкость такого конденсатора становится равной нулю. Поэтому суть проверки на обрыв состоит в том, чтобы уловить хоть малейшие признаки наличия емкости у проверяемого конденсатора.
Как это сделать? Есть три способа.
Способ №1: исключение обрыва через звуковой сигнал в режиме прозвонки
Включить мультиметр в режим прозвонки, прикоснуться щупами к выводам конденсатора и в этот момент мультиметр должен издать непродолжительный писк. Иногда звук настолько короткий (зависит от емкости конденсатора), что больше похож на щелчок и нужно очень постараться, чтобы его услышать.
Небольшой лайфхак: чтобы увеличить продолжительность звукового сигнала при прозвонке совсем маленьких конденсаторов, нужно предварительно зарядить их отрицательным напряжением, приложив щупы мультиметра в обратном порядке. Тогда при последующей прозвонке мультиметру сначала придется перезарядить конденсатор от какого-то отрицательного напряжения до нуля, и только потом — от нуля до момента отключения пищалки. На все это уйдет значительно больше времени, а значит сигнал будет звучать дольше и его проще будет расслышать.
Вот какой-то чувак, сам того не подозревая, применяет этот лайфхак на видео:
Из своей практике могу сказать, что с помощью уловки, описанной выше, мне удавалось уловить реакцию мультиметра на конденсатор емкостью всего лишь 0.1 мкФ (или 100 нФ)!
Способ №2: увеличение сопротивления постоянному току как признак отсутствия обрыва
Если предыдущий способ не помог и вообще не понятно, как проверить конденсатор тестером, то вот вам более чувствительный метод проверки.
Необходимо переключить мультиметр в режим измерения сопротивления. Выбрать максимально доступный предел измерения (20 или лучше 200 МОм). Приложить щупы к выводам конденсатора и наблюдать за показаниями мультиметра.
По мере заряда конденсатора от внутреннего источника мультиметра, его сопротивление будет постоянно расти до тех пор, пока не выйдет за пределы диапазона измерения. Если такой эффект наблюдается, значит обрыва нет.
Кстати говоря, может так оказаться, что рост сопротивления остановится на значении от единиц до пары десятков МОм — для конденсаторов с жидким электролитом (кроме танталовых) это абсолютно нормально. Для остальных конденсаторов сопротивление утечки должно быть больше, как минимум, на порядок.
При измерении таких высоких сопротивлений необходимо следить за тем, чтобы не касаться пальцами сразу обоих измерительных щупов. Иначе сопротивление кожи внесет свои коррективы и исказит все результаты.
С помощью измерения сопротивления на пределе 200 МОм мне удавалось однозначно определить отсутствие обрыва в конденсаторах емкостью всего 0.001 мкФ (или 1000 пФ).
Вот видео для наглядности:
Способ №3: измерение остаточного напряжения для исключения внутреннего обрыва
Это самый чувствительный способ, позволяющий убедиться в отсутствии обрыва конденсатора даже тогда, когда все предыдущие способы не помогли.
Берется мультиметр в режиме прозвонки или в режиме измерения сопротивления (не важно в каком диапазоне) и на пару секунд прикладываем щупы к выводам испытуемого конденсатора. В этот момент конденсатор зарядится от мультиметра до какого-то небольшого напряжения (обычно 2.8 В).
Затем мы быстро переключаем мультиметр в режим измерения постоянного напряжения на самом чувствительном диапазоне и, не мешкая слишком долго, снова прикладываем щупы к конденсатору, чтобы измерить на нем напряжение. Если у кондера есть хоть какая-нибудь вразумительная емкость, то мультиметр успеет показать напряжение, до которого был заряжен конденсатор.
Этим способом мне удавалось с помощью обычного цифрового мультиметра M890D отловить емкость вплоть до 470 пФ (0.00047 мкФ)! А это очень маленькая емкость.
Вообще говоря, это наиболее эффективный метод прозвонки конденсаторов. Таким способ можно проверять кондеры любой емкости — от малюсеньких до самых больших, а также любого типа — полярные, неполярные, электролитические, пленочные, керамические, оксидные, воздушные, металло-бумажные и т.д.
Правда, если конденсатор имеет совсем маленькую емкость, до 470 пФ, то, увы, проверить его на обрыв без специального прибора, вроде упомянутого ранее LC-метра, никак не получится.
Потеря емкости конденсатора
Для того чтобы определить, потерял ли конденсатор свою емкость, как ни странно, нужно замерить эту самую емкость. Выставьте на мультиметре соответствующий предел измеряемой емкости, разрядите проверяемый конденсатор, подключите щупы измерителя к соответствующим гнездам на нем, соблюдая правильную полярность, и наконец, прикоснитесь щупами к выводам конденсатора. Очевидно, что разобраться, как мультиметром проверить конденсатор кондиционера или любого другого бытового прибора на предмет потери емкости, не столь сложно.
Проверка и замена пускового конденсатора
Для чего нужен пусковой конденсатор?
Пусковой и рабочий конденсаторы служат для запуска и работы элетродвигателей работающих в однофазной сети 220 В.
Поэтому их ещё называют фазосдвигающими.
Место установки — между линией питания и пусковой обмоткой электродвигателя.
Условное обозначение конденсаторов на схемах
Графическое обозначение на схеме показано на рисунке, буквенное обозначение-С и порядковый номер по схеме.
Основные параметры конденсаторов
Ёмкость конденсатора-характеризует энергию,которую способен накопить конденсатор,а также ток который он способен пропустить через себя. Измеряется в Фарадах с множительной приставкой (нано, микро и т.д.).
Самые используемые номиналы для рабочих и пусковых конденсаторов от 1 мкФ (μF) до 100 мкФ (μF).
Номинальное напряжение конденсатора- напряжение, при котором конденсатор способен надёжно и долговременно работать, сохраняя свои параметры.
Известные производители конденсаторов указывают на его корпусе напряжение и соответствующую ему гарантированную наработку в часах,например:
- 400 В — 10000 часов
- 450 В — 5000 часов
- 500 В — 1000 часов
Проверка пускового и рабочего конденсаторов
Проверить конденсатор можно с помощью измерителя ёмкости конденсаторов, такие приборы выпускаются как отдельно, так и в составе мультиметра- универсального прибора, который может измерять много параметров. Рассмотрим проверку мультиметром.
- обесточиваем кондиционер
- разряжаем конденсатор, закоротив еговыводы
- снимаем одну из клемм (любую)
- выставляем прибор на измерение ёмкости конденсаторов
- прислоняем щупы к выводам конденсатора
- считываем с экрана значение ёмкости
У всех приборов разное обозначение режима измерения конденсаторов, основные типы ниже на картинках.
В этом мультиметре режим выбирается переключателем, его необходимо поставить в режим Fcх.Щупы включить в гнёзда с обозначением Сх.
Переключение предела измерения ёмкости ручное. Максимальное значение 100 мкФ.
У этого измерительного прибора автоматический режим, необходимо только его выбрать, как показано на картинке.
Измерительный пинцет от Mastech также автоматически измеряет ёмкость, необходимо только выбрать режим кнопкой FUNC, нажимая её, пока не появится индикация F.
Для проверки ёмкости, считываем на корпусе конденсатора её значение и ставим заведомо больший предел измерения на приборе. (Если он не автоматический)
К примеру, номинал 2,5 мкФ (μF), на приборе ставим 20 мкФ (μF).
После подсоединения щупов к выводам конденсатора ждём показаний на экране, к примеру время измерения ёмкости 40 мкФ первым прибором — менее одной секунды, вторым — более одной минуты, так что следует ждать.
Если номинал не соответствует указанному на корпусе конденсатора, то его необходимо заменить и если нужно подобрать аналог.
Замена и подбор пускового/рабочего конденсатора
Если имеется оригинальный конденсатор, то понятно, что просто-напросто необходимо поставить его на место старого и всё. Полярность не имеет значения, то есть выводы конденсатора не имеют обозначений плюс «+» и минус «-» и их можно подключить как угодно.
Категорически нельзя применять электролитические конденсаторы (узнать их можно по меньшим размерам, при той же ёмкости, и обозначению плюс и минус на корпусе). Как следствие применения — термическое разрушение. Для этих целей производители специально выпускают неполярные конденсаторы для работы в цепи переменного тока, которые имеют удобное крепление и плоские клеммы, для быстрой установки.
Если нужного номинала нет, то его можно получить параллельным соединением конденсаторов. Общая ёмкость будет равна сумме двух конденсаторов:
Собщ=С1+С2+…Сп
То есть, если соединить два конденсатора по 35 мкФ, получим общую ёмкость 70 мкФ, напряжение при котором они смогут работать будет соответствовать их номинальному напряжению.
Такая замена абсолютно равноценна одному конденсатору большей ёмкости.
Если во время замены перепутались провода, то правильное подключение можно посмотреть по схеме на корпусе или здесь: Схема подключения конденсатора к компрессору
Типы конденсаторов
Для запуска мощных двигателей компрессоров применяют маслонаполненные неполярные конденсаторы.
Корпус внутри заполнен маслом для хорошей передачи тепла на поверхность корпуса. Корпус обычно металлический, аллюминиевый.
Самые доступные конденсаторы такого типа CBB65.
Для запуска менее мощной нагрузки, например двигателей вентиляторов, используют сухие конденсаторы, корпус которых, обычно, пластмассовый.
Наиболее распространённые конденсаторы этого типа CBB60, CBB61.
Клеммы для удобства соединения сдвоенные или счетверённые.
Измерение напряжения конденсатора
Также, чтобы убедиться в исправности конденсатора, следует проверить, соответствует ли его реальное напряжение номинальному. Для этого вам потребуется режим вольтметра на вашем мультиметре и источник питания для зарядки конденсатора. Напряжение он должен выдавать меньше, чем то, на которое рассчитан накопитель. Подсоедините щупы к выводам и подождите немного, пока конденсатор полностью зарядится. Переведя прибор в режим вольтметра, проверьте выдаваемое накопителем напряжение. Значение, появившееся на экране мультиметра сразу же в начале тестирования, должно соответствовать заявленному.
Учтите, что при проверке накопитель теряет свой заряд и напряжение, соответственно, будет быстро падать, поэтому важно увидеть цифру, которая появилась в самом начале. Есть и более простой способ проверки, но он действенен только для конденсаторов с достаточно большой емкостью. Зарядив накопитель полностью, возьмите обыкновенную отвертку с изолированной рукояткой, поднесите ее металлическую часть к его выводам и замкните их. Если в результате проскочила яркая искра, значит, элемент рабочий. Если же искра очень слабая или вовсе отсутствует, значит, конденсатор не держит заряд.
Советы и рекомендации
Приступая к проверке элементов необходимо четко понимать, что даже самые современные мультиметры не способны измерять очень большую емкость таких устройств, в большинстве своем максимальным пределом является измерение как полярных, так и неполярных элементов емкостью до 200 мкФ (200uF).
Не лишне радиолюбителям помнить и о технике безопасности при проверке подобных утройств высоковольтных схемах.
Ремонт бытовой радиоаппаратуры в которой применяются высоковольтные схемы, должен начинаться после выключения прибора и разрядки электронного компонента разрядной цепью из резистора номиналом 2 кОм…1 Мом, которая соединяется с общим проводом схемы или корпусом:
- в низковольтных цепях с емкостями до 1000 мкФ и напряжением до 400 В достаточно 2 кОм (25 Вт);
- для цепей с емкостями до 2 мкФ и со средними рабочими напряжениями до 5000 В — 100 кОм (25 Вт);
- для высоковольтных цепей с емкостями до 2 нФ и рабочими напряжениями до 50 кВ — 1 МОм (10 Вт).
Ну и для любителей экстрима вполне может подойти древнейший способ проверки устройств большой емкости. После полной зарядки, а свойство заряжаться и копить заряд электричества в данном случае будет иметь основное значение, выводы элемента замыкаются на металлическом предмете, при этом желательно не только изолировать сам предмет, но и руки резиновыми перчатками.
Результат должен проявиться в неповторимой искре и одновременном звуковом сопровождении процесс разряда.
Дорожки и контактные площадки на современных платах становятся все меньше, а сами платы зачастую являются многослойными.
Все это значительно усложняет процесс отсоединения элемента с целью контроля его работоспособности.
Потому актуальным становится вопрос: как проверить конденсатор мультиметром не выпаивая его? Попробуем найти решение.
Как разрядить конденсатор в микроволновке
Разрядить его возможно такими способами:
Отключив от электросети, конденсатор разряжают, осмотрительно замкнув отверткой его клеммы. Хороший разряд свидетельствует о его исправном состоянии. Такой способ разрядки самый распространенный, хотя некоторые считают его опасным, способным нанести вред и разрушить приспособление.
Разряд конденсатора отвертками
У высоковольтного конденсатора есть интегрированный резистор. Он работает для разряда детали. Приспособление располагается под высочайшим напряжением (2 кВ), и потому есть необходимость в его разряде в основном на корпус. Детали с ёмкостью более 100 мкФ и напряжением от 63V лучше разряжать через резистор 5-20 килоОм и 1 – 2 Вт. Для чего концы резистора объединяют с клеммами приспособления на некоторое количество секунд, чтобы снять заряд. Это необходимо для предотвращения возникновение сильной искры. Потому надо побеспокоиться об личной безопасности.
От чего зависит ток утечки конденсатора
Ток утечки конденсатора обычно зависит от следующих четырех факторов: диэлектрический слой, температура окружающей среды, температура хранения, приложенное напряжение. Рассмотрим влияние этих факторов на ток утечки.
Конструкция конденсатора требует химического процесса. Диэлектрический материал является основным разделением между проводящими пластинами. Поскольку диэлектрик является главным изолятором, ток утечки имеет с ним большие зависимости. Поэтому, если диэлектрик закаливается в процессе производства, это будет непосредственно способствовать увеличению тока утечки. Иногда в диэлектрических слоях присутствуют примеси, что приводит к слабости слоя. Более слабый диэлектрик уменьшает ток, что также способствует медленному процессу окисления. Не только это, но и неправильное механическое напряжение также способствуют диэлектрической слабости в конденсаторе.
Конденсатор имеет рейтинг рабочей температуры. Максимальная рабочая температура может варьироваться от 85 градусов Цельсия до 125 градусов Цельсия или даже больше. Поскольку конденсатор представляет собой химически составленное устройство, температура имеет прямую связь с химическим процессом внутри конденсатора. Ток утечки обычно увеличивается, когда температура окружающей среды достаточно высока.
Хранение конденсатора в течение длительного времени без напряжения – плохо для конденсатора. Температура хранения также является важным фактором для тока утечки. Когда конденсаторы хранятся, оксидный слой подвергается воздействию материала электролита. Оксидный слой начинает растворяться в материале электролита. Химический процесс отличается для разных типов электролита. Электролит на водной основе нестабилен, тогда как инертный электролит на основе растворителя обеспечивает меньший ток утечки из-за уменьшения окислительного слоя.
Каждый конденсатор имеет номинальное напряжение. Поэтому использование конденсатора выше номинального напряжения – это плохо. Если напряжение увеличивается, ток утечки также увеличивается. Если напряжение на конденсаторе выше номинального напряжения, химическая реакция внутри конденсатора создает газы и разлагает электролит.
Ток утечки конденсатора: причины и особенности
Конденсатор является наиболее распространенным компонентом в электронике и используется почти во всех электронных устройствах. Есть много типов конденсаторов, доступных на рынке для различных целей в любой электронной схеме. Они доступны во многих различных значениях емкости от 1 пикофарадного до 1-фарадного конденсатора и суперконденсатора (ионистора). Конденсаторы также имеют различные типы характеристик, такие как рабочее напряжение, рабочая температура, допуск на номинальное значение и ток утечки.
Ток утечки конденсатора является критическим фактором для применения, особенно если он используется в силовой электронике или аудиоэлектронике. Различные типы конденсаторов обеспечивают разные значения тока утечки. Помимо выбора идеального конденсатора с надлежащей утечкой, цепь также должна иметь возможность контролировать ток утечки. Итак, сначала мы должны иметь четкое понимание тока утечки конденсатора.
Ток утечки конденсатора имеет прямую связь с диэлектриком конденсатора. Давайте посмотрим на следующее изображение.
Это изображение представляет собой внутреннюю конструкцию алюминиевого электролитического конденсатора. Алюминиевый электролитический конденсатор состоит из нескольких частей, которые заключены в компактную герметичную упаковку. Эти части: анод, катод, электролит, диэлектрический слой изолятора и т. д.
Диэлектрический изолятор обеспечивает изоляцию проводящей пластины внутри конденсатора. Но поскольку в этом мире нет ничего идеального, изолятор не является идеальным изолятором и имеет допуск на изоляцию. Из-за этого через изолятор будет проходить очень небольшое количество тока. Этот ток называется током утечки.
Такое протекание тока может быть продемонстрировано с помощью схемы простого конденсатора и резистора.
Резистор имеет очень высокое значение сопротивления, которое можно идентифицировать как сопротивление изолятора, а конденсатор используется для воспроизведения фактического конденсатора. Поскольку резистор имеет очень высокое значение сопротивления, ток, протекающий через резистор, очень низкий, как правило, в нескольких наноампер. Сопротивление изоляции зависит от типа диэлектрического изолятора, поскольку различные типы материалов изменяют ток утечки. Низкая диэлектрическая постоянная обеспечивает очень хорошее сопротивление изоляции, что приводит к очень низкому току утечки. Например, конденсаторы полипропиленового, пластикового или тефлонового типа являются примером низкой диэлектрической проницаемости. Но для этих конденсаторов емкость меньше. Увеличение емкости также увеличивает диэлектрическую проницаемость. Электролитические конденсаторы обычно имеют очень высокую емкость, и ток утечки также высок.
Как уменьшить ток утечки конденсатора
Как обсуждалось ранее, конденсатор имеет зависимости от многих факторов. Первый вопрос: как рассчитывается срок службы конденсатора? Ответ заключается в подсчете времени до истечения электролита. Электролит расходуется окислительным слоем. Ток утечки является основным компонентом для измерения степени загрязнения окислительного слоя. Следовательно, уменьшение тока утечки в конденсаторе является основным ключевым компонентом для срока службы конденсатора.
Производство или производственная установка – это первое место в жизненном цикле конденсаторов, где конденсаторы тщательно изготавливаются для обеспечения низкого тока утечки. Необходимо принять меры предосторожности, чтобы диэлектрический слой не был поврежден.
Второй этап – хранение. Конденсаторы должны храниться при надлежащей температуре. Неправильная температура влияет на электролит конденсатора, что еще более ухудшает качество окислительного слоя. Убедитесь, что конденсаторы хранятся при надлежащей температуре окружающей среды, меньше максимальной величины.
На третьем этапе, когда конденсатор припаян на плате, температура пайки является ключевым фактором. Потому что для электролитических конденсаторов температура пайки может стать достаточно высокой, превышающей температуру кипения конденсатора. Температура пайки влияет на диэлектрические слои на свинцовых выводах и ослабляет окислительный слой, что приводит к высокому току утечки. Чтобы преодолеть это, каждый конденсатор поставляется с паспортом, где производитель указывает безопасную температуру пайки и максимальное время выдержки. Нужно быть осторожным с этими оценками для безопасной работы соответствующего конденсатора. Это также применимо к конденсаторам поверхностного монтажа (SMD), пиковая температура пайки оплавлением или волной не должна превышать максимально допустимого значения.
Поскольку напряжение на конденсаторе является важным фактором, напряжение на конденсаторе не должно превышать номинальное напряжение.
Не менее важна балансировка конденсатора в последовательном соединении. Последовательное соединение конденсаторов представляет собой сложную работу по балансировке тока утечки. Это связано с дисбалансом тока утечки, делением напряжения и разделением между конденсаторами. Раздельное напряжение может быть различным для каждого конденсатора, и может быть вероятность того, что напряжение на конкретном конденсаторе может быть больше, чем номинальное напряжение, и конденсатор начнет работать со сбоями.
Чтобы преодолеть эту проблему, два отдельных резистора добавляются параллельно конденсаторам, чтобы уменьшить ток утечки. На рисунке ниже показана методика балансировки, при которой два последовательно соединенных конденсатора уравновешиваются с помощью высококачественных резисторов.
Используя метод балансировки, можно регулировать разницу напряжения, которая влияет на ток утечки.
Источник