Титановые руды: свойства, способы добычи и промышленное применение


Общая характеристика титана и его сплавов

Именно основные механические свойства титановых сплавов определяют их большое распространение. Если не уделять внимание химическому составу, то все титановые сплавы можно охарактеризовать следующим образом:

  1. Высокая коррозионная стойкость. Недостатком большинства металлов можно назвать то, что при воздействии высокой влажности на поверхности образуется коррозия, которая не только ухудшает внешний вид материала, но и снижает его основные эксплуатационные качества. Титан менее восприимчив к воздействию влажности, чем железо.
  2. Хладостойкость. Слишком низкая температура становится причиной того, что механические свойства титановых сплавов существенно снижаются. Часто можно встретить ситуацию, когда эксплуатация при отрицательных температурах становится причиной существенного повышения хрупкости. Титан довольно часто применяется при изготовлении космических кораблей.
  3. Титан и титановые сплавы имеют относительно низкую плотность, что существенно снижает вес. Легкие металлы получили широкое применение в самых различных отраслях промышленности, к примеру, в авиастроении, строительстве небоскребов и так далее.
  4. Высокая удельная прочность и низкая плотность – характеристики, которые довольно редко сочетаются. Однако именно за счет подобного сочетания титановые сплавы сегодня получили самое широкое распространение.
  5. Технологичность при обработке давлением определяет то, что сплав применяется часто в качестве заготовки при прессовании или другом виде обработки.
  6. Отсутствие реакции на воздействие магнитного поля также назовем причиной, по которой рассматриваемые сплавы получили широкое применение. Часто можно встретить ситуацию, когда проводится производство конструкций, при работе которых образуется магнитное поле. Применение титана позволяет исключить вероятность возникновения связи.

Эти основные преимущества титановых сплавов определили их достаточно большое распространение. Однако, как ранее было отмечено, многое зависит от конкретного химического состава. Примером можно назвать то, что твердость изменяется в зависимости от того, какие именно вещества применяются при легировании.

Важно, что температура плавления может достигать 1700 градусов Цельсия. За счет этого существенно повышается устойчивость состава к нагреву, но также усложняется процесс обработки.

Производство титанового шлака

Основное назначение этого процесса – отделение оксидов железа от оксида титана. Для этого ильменитовый концентрат плавят в смеси с древесным углём и антрацитом в электропечах, где оксиды железа и часть титана восстанавливаются по реакции:

3(FeO·TiO2) + 4C = 3Fe + Ti3O5 + 4CO

Восстановленное железо науглероживается, образуя чугун, который собирается на дне ванны печи, отделяясь от остальной массы шлака вследствие различия их удельных весов. Чугун и шлак разливают отдельно в изложницы. Полученный титановый шлак содержит 80 – 90% TiO2.

Виды титановых сплавов

Классификация титановых сплавов ведется по достаточно большому количеству признаков. Все сплавы можно разделить на несколько основных групп:

  1. Высокопрочные и конструкционные – прочные титановые сплавы, которые обладают также достаточно высокой пластичностью. За счет этого они могут применяться при изготовлении деталей, на которые оказывается переменная нагрузка.
  2. Жаропрочные с низкой плотностью применяются как более дешевая альтернатива жаропрочным никелевым сплавам с учетом определенного температурного интервала. Прочность подобного титанового сплава может варьироваться в достаточно большом диапазоне, что зависит от конкретного химического состава.
  3. Титановые сплавы на основе химического соединения представляют жаропрочную структуру с низкой плотностью. За счет существенного снижения плотности вес также снижается, а жаропрочность позволяет использовать материал при изготовлении летательных аппаратов. Кроме этого с подобной маркой связывают также высокую пластичность.

Маркировка титановых сплавов проводится по определенным правилам, которые позволяют определить концентрацию всех элементов. Рассмотрим некоторые из наиболее распространенных разновидностей титановых сплавов подробнее.

Сферы из титанового сплава

Рассматривая наиболее распространенные марки титановых сплавов, следует обратить внимание ВТ1-00 и ВТ1-0. Они относятся к классу технических титанов. В состав данного титанового сплава входит достаточно большое количество различных примесей, которые определяют снижение прочности. Однако за счет снижения прочности существенно повышается пластичность. Высокая технологическая пластичность определяет то, что технический титан можно получить даже при производстве фольги.

Очень часто рассматриваемый состав сплава подвергается нагартовке. За счет этого повышается прочность, но существенно снижается пластичность. Многие специалисты считают, что рассматриваемый метод обработки нельзя назвать лучшим, так как он не оказывает комплексного благоприятного воздействия на основные свойства материала.

Сплав ВТ5 довольно распространен, характеризуется применением в качестве легирующего элемента исключительно алюминия. Важно отметить, что именно алюминий считается самым распространенным легирующим элементом в титановых сплавах. Это связано с нижеприведенными моментами:

  1. Применение алюминия позволяет существенно повысить модули упругости.
  2. Алюминий также позволяет повысить значение жаропрочности.
  3. Подобный металл один из самых распространенных в своем роде, за счет чего существенно снижается стоимость получаемого материала.
  4. Снижается показатель водородной хрупкости.
  5. Плотность алюминия ниже плотности титана, за счет чего введение рассматриваемого легирующего вещества позволяет существенно повысить удельную прочность.

В горячем состоянии ВТ5 хорошо куется, прокатывается и штампуется. Именно поэтому его довольно часто применяют для получения поковки, проката или штамповки. Подобная структура может выдержать воздействие не более 400 градусов Цельсия.

Титановый сплав ВТ22 может иметь самую различную структуру, что зависит от химического состава. К эксплуатационным особенностям материала можно отнести следующие моменты:

  1. Высокая технологическая пластичность при обработке давлением в горячем состоянии.
  2. Применяется для изготовления прутков, труб, плиты, штамповок, профиля.
  3. Для сваривания могут использоваться все наиболее распространенные методы.
  4. Важным моментом является то, что после завершения процесса сварки рекомендуется проводить отжиг, за счет чего существенно повышаются механические свойства получаемого шва.

Существенно повысить эксплуатационные качества титанового сплава ВТ22 можно путем применения сложной технологии отжига. Она предусматривает нагрев до высокой температуры и выдержки в течение нескольких часов, после чего проводится поэтапное охлаждение в печи также с выдержкой в течение длительного периода. После качественного проведения отжига сплав подойдет для изготовления высоконагруженных деталей и конструкций, которые могут нагреваться до температуры более 350 градусов Цельсия. Примером можно назвать элементы фюзеляжа, крыла, детали системы управления или крепления.

Титановый сплав ВТ6 сегодня получил самое широкое распространение за рубежом. Назначение подобного титанового сплава заключается в изготовлении баллонов, которые могут работать под большим давлением. Кроме этого, согласно результатам проведенных исследований, в 50% случаев в авиакосмической промышленности применяется титановый сплав, который по своим эксплуатационным качествам и составу соответствует ВТ6. Стандарт ГОСТ сегодня практически не применяется за рубежом для обозначения титановых и многих других сплавов, что следует учитывать. Для обозначения применяется своя уникальная маркировка.

ВТ6 обладает исключительными эксплуатационными качествами по причине того, что в состав добавляется также ванадий. Этот легирующий элемент характеризуется тем, что повышает не только прочность, но и пластичность.

Данный сплав хорошо деформируется в горячем состоянии, что также можно назвать положительным качеством. При его применении получают трубы, различные профили, плиты, листы, штамповки и многие другие заготовки. Для сваривания можно применять все современные методы, что также существенно расширяет область применения рассматриваемого титанового сплава. Для повышения эксплуатационных качеств также проводится термическая обработка, к примеру, отжиг или закалка. На протяжении длительного времени отжиг проводился при температуре не выше 800 градусов Цельсия, однако результаты проведенных исследований указывают на то, что есть смысл в повышении показателя до 950 градусов Цельсия. Двойной отжиг зачастую проводится для повышения сопротивления коррозионному воздействию.

Внешний вид титановых сплавов

Также большое распространение получил сплав ВТ8. В сравнении с предыдущим он обладает более высокими прочностными и жаропрочными качествами. Достигнуть уникальных эксплуатационных качеств смогли за счет добавления в состав большого количества алюминия и кремния. Стоит учитывать, что максимальная температура, при которой может эксплуатироваться данный титановый сплав около 480 градусов Цельсия. Разновидностью этого состава можно назвать ВТ8-1. Его основными эксплуатационными качествами назовем нижеприведенные моменты:

  1. Высокая термическая стабильность.
  2. Низкая вероятность образования трещин в структуре за счет обеспечения прочных связей.
  3. Технологичность при проведении различных процедур обработки, к примеру, холодной штамповки.
  4. Высокая пластичность вместе с повышенной прочностью.

Для существенно повышения эксплуатационных качеств довольно часто проводится двойной изотермический отжиг. В большинстве случаев данный титановый сплав применяется при производстве поковок, прудков, различных плит, штамповок и других заготовок. Однако стоит учитывать, что особенности состава не позволяют проводить сварочные работы.

Технология производства титана

Титан отличается высокой механической прочностью, коррозионной стойкостью, жаропрочностью (Тпл = 1660 °С) и малой плотностью (4,51 г/см3). Его применяют как конструкционный материал в самолетостроении, а также при постройке сосудов, предназначенных для транспортирования концентрированной азотной и разбавленной серной кислот.

Применяют также диоксид TiO2 для производства титановых белил и эмали. Наиболее распространенным сырьем для производства титана и диоксида Ti служит ильменитовый концентрат, выделяемый при обогащении титаномагнетитовых железных руд, в котором содержится, %: 40-60 TiO2, ~30 FeO, ~20 Fe2O3 и 5—7 пустой породы (CaO, MgO, Al2O3, SiO2), причем титан в виде минерала ильменита FeO • TiO2.

Технологический процесс производства титана из ильменитового концентрата состоит из следующих основных стадий:

  • получение титанового шлака восстановительной плавкой,
  • получение тетрахлорида титана хлорированием титановых шлаков,
  • производство титана (губки, порошка) восстановлением из тетрахлорида.

Восстановительная плавка ильменитового концентрата имеет целью перевести TiO2 в шлак и отделить оксиды железа путем их восстановления. Плавку проводят в электро дуговых печах. Сначала загружают концентрат и восстановитель (кокс, антрацит), их нагревают до ~ 1650 °С. Основной реакцией является: FeO • TiO2 + С = Fe + TiO2 + CO. Из восстановленного и науглероживающегося железа образуется чугун, а оксид титана переходит в шлак, который содержит 82—90% TiO2.

Получение тетрахлорида титана TiCl4 осуществляют воздействием газообразного хлора на TiO2 при температурах 700—900 °С, при этом протекает реакция:

TiO2 + 2Cl2 + 2С = TiCl4 + 2СО.

Хлорирование осуществляют в шахтных хлораторах непрерывного действия или в солевых хлораторах. Шахтный хлоратор — это футерованный цилиндр диаметром до 2 и высотой до 10 м, в который сверху загружают брикеты из измельченного титанового шлака и снизу вдувают газ магниевых электролизеров, содержащий 65—70 % Cl2. Взаимодействие TiO2 брикетов и хлора идет с выделением тепла, обеспечивающего необходимые для процесса температуры (~ 950 °С в зоне реагирования). Образующийся в хлораторе газообразный TiCl4 отводят через верх, остаток шлака от хлорирования непрерывно выгружают снизу.

Солевой хлоратор представляет собой футерованную шамотом камеру, наполовину заполненную отработанным электролитом магниевых электролизеров, содержащим хлориды калия, натрия, магния и кальция. Сверху в расплав загружают измельченные титановый шлак и кокс, а снизу вдувают хлор. Температура 800—850 °С, необходимая для интенсивного протекания хлорирования титанового шлака в расплаве, обеспечивается за счет тепла протекающих экзотермических реакций хлорирования.

Газообразный TiCl4 из верха хлоратора отводят на очистку от примесей, отработанный электролит периодически заменяют. Основное преимущество солевых хлораторов состоит в том, что не требуется дорогостоящее брикетирование шихты. Отводимый из хлораторов газообразный TiCl4 содержит пыль и примеси газов — СО, СO2 и различные хлориды, поэтому его подвергают сложной, проводимой в несколько стадий очистке.

Металлатермическое восстановление титана из тетрахлорида TiCl4 проводят магнием или натрием. Для восстановления магнием служат аппараты, представляющие собой помещенную в печь герметичную реторту высотой 2—3 м из хромо-никелевых сталей. После ввода в разогретую до ~ 750 °С реторту магния в нее подают тетрахлорид титана .

Восстановление титана магнием TiCl4 + 2Mg = Ti + + 2MgCl2 идет с выделением тепла, поэтому электронагрев печи отключают и реторту обдувают воздухом, поддерживая температуру в пределах 800—900 °С; ее регулируют также скоростью подачи тетрахлорида титана. За один цикл восстановления длительностью 30—50 ч получают 1—4 т титана в виде губки (твердые частицы титана спекаются в пористую массу — губку). Жидкий MgCl2 из реторты периодически выпускают.

Рисунок 1. Аппарат для восстановления тетрахлорида магнием: 1 — коллектор для подачи и отвода воздуха; 2 — печь; 3 — штуцер для вакуумирования; 4 — патрубок для заливки магния; 5 — узел подачи тетрахлорида; б — крышка; 7 — реторта; 8 — термопары; 9 — нагреватель; 10 — устройство для слива

Титановая губка впитывает много MgCl2 и магния, по-этому после окончания цикла восстановления проводят вакуумную отгонку примесей. Реторту после нагрева до ~ 1000 °С и создания в ней вакуума выдерживают в течение 35—50 ч; за это время примеси испаряются. Иногда отгонку примесей из губки проводят после ее извлечения из реторты.

Восстановление титана натрием проводят в аппаратах, схожих с применяемыми для магниетермического восстановления. В реторте после подачи TiCl4 и жидкого натрия идет реакция восстановления титана: TiCl4 + 4Na = Ti + 4NaCl. Температура в 800—880 °С поддерживается за счет выделяющегося при восстановлении тепла.

Полученную твердую массу, содержащую 17 % Ti и 83 % NaCl извлекают из реактора, измельчают и выщелачивают из нее NaCl водой, получая титановый порошок. Рафинирование титана. Для получения титана высокой чистоты применяют так называемый иодидный способ, при котором используется реакция Ti + 2I2 = TiI4. При температуре 100—200 °С реакция протекает в направлении образования Til4, а при температуре 1300—1400 °С — в обратном направлении.

Титановую губку (порошок) загружают в специальную реторту, помещаемую в термостат, где температура должна быть на уровне 100—200 °С, и внутри нее спеиальным приспособлением разбивают ампулу с иодом. Через несколько натянутых в реторте титановых проволок пропускают ток, в результате чего они накаливаются до 1300—1400 °С. Пары иода реагируют с титаном губки по реакции Ti + 2I2 — TiI4.

Полученный TiI4 разлагается на раскаленной титановой проволоке, образуя кристаллы чистого Ti и освобождая иод. Пары иода вновь вступают во взаимодействие с рафинируемым титаном, а на проволоке постепенно наращивается слой кристаллизующегося чистого титана. Процесс заканчивают при толщине получаемого прутка титана 25—30 мм. Получаемый металл содержит 99,9—99,99 % Ti, в одном аппарате получают ~ 10 кг чистого титана в сутки.

Для получения ковкого Ti в виде слитков губку переплавляют в вакуумной дуговой печи. Расходуемый (плавящийся) электрод получают прессованием губки и титановых отходов. Жидкий титан затвердевает в печи в водоохлаждаемом кристаллизаторе.

Источник [2] → список литературы.

Применение титановых сплавов

Рассматривая области применения титановых сплавов отметим, что большая часть разновидностей применяется в авиационной и ракетостроительной сферах, а также в сфере изготовления морских судов. Для изготовления деталей авиадвигателей другие металлы не подходят по причине того, что при нагреве до относительно невысоких температур начинают плавиться, за счет чего происходит деформация конструкции. Также увеличения веса элементов становится причиной потери КПД.


Нож из титанового сплава


Применение титановых сплавов в медицине

Применим материал при производстве:

  1. Трубопроводов, используемых для подачи различных веществ.
  2. Запорной арматуры.
  3. Клапанов и других подобных изделий, которые применяются в агрессивных химических средах.
  4. В авиастроении сплав применяется для получения обшивки, различных креплений, деталей шасси, силовых наборов и других агрегатов. Как показывают результаты проводимых исследований, внедрение подобного материала снижает вес примерно на 10-25%.
  5. Еще одной сферой применения является ракетостроение. Кратковременная работа двигателя, движение на большой скорости и вхождение в плотные слои становится причиной, по которой конструкция переживает серьезные нагрузки, способные выдержать не все материалы.
  6. В химической промышленности титановый сплав применяется по причине того, что он не реагирует на воздействие различных веществ.
  7. В судостроении титан хорош тем, что не реагирует на воздействие соленой воды.

В целом можно сказать, что область применения титановых сплавов весьма обширна. При этом проводится легирование, за счет чего существенно повышаются основные эксплуатационные качества материала.

Трубы из титановых сплавов

Термообработка титановых сплавов

Для повышения эксплуатационных качеств проводится термическая термообработка титановых сплавов. Данный процесс существенно усложняется по причине того, что перестроение кристаллической решетки поверхностного слоя проходит при температуре выше 500 градусов Цельсия. Для плавов марки ВТ5 и ВТ6-С довольно часто проводят отжиг. Время выдержки может существенно отличаться, что зависит от толщины заготовки и других линейных размеров.

Детали, изготавливаемые из ВТ14, на момент применения должны выдерживать температуру до 400 градусов Цельсия. Именно поэтому термическая обработка предусматривает закалку с последующим старением. При этом закалка требует нагрева среды до температуры около 900 градусов Цельсия, в то время как старение предусматривает воздействие среды с температурой 500 градусов Цельсия на протяжении более 12-и часов.

Индукционные методы нагрева позволяют проводить самые различные процессы термической обработки. Примером можно назвать отжиг, старение, нормализацию и так далее. Конкретные режимы термической обработки выбираются в зависимости от того, какие нужно достигнуть эксплуатационные характеристики.

Восстановление четыреххлористого титана магнием

Восстановление осуществляется в специальных реакторах при температуре 950 – 1000 °С. В реактор загружают чушковый магний и после откачки воздуха и заполнения полоти реактора аргоном внутрь его подают парообразный четыреххлористый титан. Процесс восстановления титана идёт по реакции:

TiCl4 + 2Mg = Ti + 2MgCl2

Металлический титан оседает на стенках, образуя губчатую массу, а хлористый магний в виде расплава выпускают через лётку реактора. В результате восстановления образуется реакционная масса, представляющая собой губку титана, пропитанную магнием и хлористым магнием, содержание которых достигает 35 – 40%.

Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]