Довольно часто для построения сварочного инвертора применяют основные три типа высокочастотных преобразователей, а именно преобразователи включенные по схемам: асимметричный или косой мост, полумост, а также полный мост. При этом резонансные преобразователи являются подвидами схем полумоста и полного моста. По системе управления данные устройства можно поделить на: ШИМ (широтно-импульсной модуляцией), ЧИМ (регулирование частоты), фазовое управления, а также могут существовать комбинации всех трех систем.
Все выше перечисленные преобразователи имеют свои плюсы и минусы. Разберемся с каждым в отдельности.
Система полумост с ШИМ
Блок схема показана ниже:
Это, пожалуй, один из самых простых, но не менее надежных преобразователей семейства двухтактных. «Раскачка» напряжения первичной обмотки трансформатора силового будет равна половине напряжения питания – это недостаток данной схемы. Но если посмотреть с другой стороны, то можно применить трансформатор с меньшим сердечником, не опасаясь при этом захода в зону насыщения, что одновременно является и плюсом. Для сварочных инверторов имеющих мощность порядка 2-3 кВт такой силовой модуль вполне перспективен.
Поскольку силовые транзисторы работают в режиме жесткого переключения, то для их нормальной работы необходимо ставить драйверы. Это связано с тем, что при работе в таком режиме, транзисторам необходим высококачественный управляющий сигнал. Также обязательно наличие безтоковой паузы, чтоб не допустить одновременное открытие транзисторов, результатом чего станет выход последних из строя.
Резонансный полумост
Довольно перспективный вид полумостового преобразователя, его схема показана ниже:
Резонансный полумост будет немного проще, чем полумост с ШИМ. Это обусловлено наличием индуктивности резонансной, которая ограничивает максимальный ток транзисторов, а коммутация транзисторов происходит в нуле тока или напряжения. Ток, протекающий по силовой цепи, будет иметь форму синусоиды, что снимет нагрузку с конденсаторных фильтров. При таком построении схемы необязательно необходимы драйверы, переключение может осуществляться обычным импульсным трансформатором. Качество управляющих импульсов в данной схеме не столь существенно как в предыдущей, но безтоковая пауза все равно должна быть.
В данном случае можно обойтись без токовой защиты, а форма вольт-амперной характеристики ВАХ будет иметь падающий вид, что не требует ее параметрического формирования.
Выходной ток будет ограничиваться только индуктивностью намагничивания трансформатора и соответственно сможет достигать довольно таки значительных величин, в случае, когда возникнет короткое замыкание КЗ. Данное свойство положительно влияет на поджиг и горение дуги, но и его также необходимо учитывать при подборе выходных диодов.
Как правило, выходные параметры регулируются изменением частоты. Но и регулирование фазное тоже дает немного своих плюсов и является более перспективным для сварочных инверторов. Он позволяет обойти такое неприятное явление как совпадение режима короткого замыкания с резонансом, а также увеличивает диапазон регулирования выходных параметров. Применение фазовой регулировки может позволить изменять выходной ток в диапазоне от 0 до Imax.
Ассиметричный или «косой» мост
Это однотактный, прямоходовой преобразователь, блок схема которого приведена ниже:
Данный тип преобразователя довольно популярен как у простых радиолюбителей, так и у производителей сварочных инверторов. Самые первые сварочные инверторы строились именно по таким схемам – асимметричный или «косой» мост. Помехозащищенность, довольно широкий диапазон регулирования выходного тока, надежность и простота – эти все качества до сих пор привлекают производителей до сих пор.
Довольно высокие токи, проходящие через транзисторы, повышенное требование к качеству управляющего импульса, что приводит к необходимости использовать мощные драйвера для управления транзисторами, а высокие требования к выполнению монтажных работ в этих устройствах и наличие больших импульсных токов, которые в свою очередь повышают требования к конденсаторным фильтрам – это существенные недостатки такого типа преобразователя. Также для поддерживания нормальной работы транзисторов необходимо добавление RCD цепочек – снабберов.
Но несмотря на выше перечисленные недостатки и низкий КПД устройства по схеме асимметричный или «косой» мост все еще применяются в сварочных инверторах. В данном случае транзисторы Т1 и Т2 будут работать синфазно, то есть закрываться и открываться одновременно. В данном случае накопление энергии будет происходить не в трансформаторе, а в катушке дросселя Др1. Именно поэтому для того, чтоб получить одинаковую мощность с мостовым преобразователем необходим удвоенный ток через транзисторы, так как рабочий цикл при этом не будет превышать 50%. Более подробно данную систему мы рассмотрим в следующих статьях.
Блок управления
Схема блока управления полномостовымсварочным инвертором
……….Блок управления построен на основераспространённого ШИМ-контроллера TL494 с задействованием одного каналарегулирования. Этот канал стабилизирует ток в дуге. Задание токаформирует микроконтроллер с помощью модуля CCP1 в режиме ШИМ на частотепримерно 75 кГц. Заполнение ШИМ будет определять напряжение наконденсаторе C1. Величина этого напряжения определяет величинусварочного тока. ……….С помощью микроконтроллера выполняется также блокировка инвертора. Если на вход DT(4) TL494 будет подан высокийлогический уровень, то импульсы на выходе Out исчезнут и инверторостановится. Появление логического нуля на выходе RA4 микроконтроллераприведёт к плавному старту инвертора, то есть к постепенному увеличениюзаполнения импульсов на выходе Out до максимального. Блокировкаинвертора используется в момент включения и при превышении температурырадиаторов. Вот что получилосьв железе. Блокпитания, драйвера и блок управления на одной плате.
.В моём аппарате индикатор и клавиатураподключены к блоку управления через компьютерный шлейф. Шлейф проходитв непосредственной близости от радиаторов ключей и трансформатора. Вчистом виде такой конструктив приводил к ложному нажатию на клавиши.Пришлось применить следующие спец. меры. На шлейфодето ферритовое кольцо К28x16x9. Шлейф скручен (насколько позволялаего длина). Для клавиатуры и термостатов использованыдополнительные подтягивающие резисторы 1,8К, зашунтированныекерамическими конденсаторами 100 пкф. Такое схемное решениеобеспечило помехоустойчивость клавиатуры, полностью исключеныложные нажатия клавиш. ……….Хотя, моё мнение – нужно недопускать помехи в блок управления. Для этого блок управления долженбыть отделён от силовой части сплошным металлическим листом.
Полный мост с ШИМ
Представляет собой классический двухтактный преобразователь, блок схема которого показана ниже:
Данная схема позволяет получать мощность в 2 раза больше, чем при включении типа полумост и в 2 раза больше чем при включении типа «косой» мост, при этом величины токов и соответственно потери во всех трех случаях будут равны. Это можно объяснить тем, напряжение питания будет равным напряжению «раскачки» первичной обмотки трансформатора силового.
Для того, чтоб получить одинаковые мощности с полумостом (напряжение раскачки 0,5Uпит.) необходим ток в 2 раза! меньше чем для случая полумоста. В схеме полного моста с ШИМ транзисторы будут работать поочередно – Т1, Т3 включены, а Т2, Т4 выключены и соответственно наоборот при изменении полярности. Через трансформатор тока отслеживают и контролируют значения амплитудное тока протекающего через эту диагональ. Для его регулирования есть два наиболее часто применяемые способы:
- Оставить неизменным напряжение отсечки, а изменять только длину импульса управления;
- Проводить изменения уровня отсекающего напряжения по данным с трансформатора тока при этом оставляя неизменным длительность импульса управления;
Оба способа могут позволить проводить изменения выходного тока в довольно больших пределах. У полного моста с ШИМ недостатки и требования такие же, как и у полумоста с ШИМ. (Смотри выше).
Настройка инвертора
Силовая часть пока обесточена.Предварительно проверенный блок питания подключаем к блоку управления ивключаем его в сеть. На индикаторе загорятся все восьмёрки с точкой вмладшем разряде. Включаем осциллограф в провода Out1 и Out2.Контролируем наличие двухполярных импульсов частотой 40-50 кГц сполочкой мёртвого времени не менее 1,5 мкс между ними. Величинумёртвого времени можно подкорректировать, изменив напряжение на входеDT(4) у TL494. После этого нужно осциллографом проверить напряжение назатворах ключей. Там должны быть прямоугольные импульсы с фронтами неболее 500 нс, частотой 40-50 кГц и амплитудой 15-18 В. Если всё так, собираем полностью схемуинвертора и включаем его в сеть. На индикацию сначала будут выведенывосьмёрки, затем должно включиться реле и индикатор покажет 120 А. Есливосьмёрки продолжают гореть, значит напряжение в сварочных проводах непревышает 100 В. Ищем причину и устраняем её. Если всё так, то кликая кнопками пробуемизменять задание тока. Если удерживать одну из кнопок, то изменениезадания тока будет происходить автоматически. Изменение задания токадолжно пропорционально изменять напряжение на конденсаторе C1. Кликаем обе кнопки одновременно. Переходимв режим отображения температуры. Если показания температуры не верны,то подбирая сопротивление резистора R2, добиваемся точных показаний. Если всё так, устанавливаем задание 20 А ивключаем в сварочные провода нагрузочный реостат сопротивлением 0,5 Ом.Реостат должен выдерживать протекание тока не менее 60 А. К выводамшунта подключаем вольтметр магнитоэлектрической системы со шкалой на 75мВ, например прибор Ц 4380. На нагруженном инверторе пытаемся изменятьзадание тока и по показаниям вольтметра контролируем ток. Ток долженменяться пропорционально заданию. Выставляем задание тока 50 А. Еслипоказания вольтметра не соответствуют 50 А, то на выключенном инверторевпаиваем сопротивление R3 другого номинала. Подбирая сопротивление R3добиваемся соответствие задания тока измеренному. Если всё так, можно попытаться варить,после 1 минуты сварки током 120 А выключаем инвертор из сети и ищемсамый горячий радиатор. В этот радиатор необходимо вмонтировать датчиктемпературы.
Резонансный мост
Является наиболее перспективной схемой высокочастотного преобразователя для сварочного инвертора, блок схема которого показана ниже:
Резонансный мост не сильно отличается от полного моста с ШИМ. Разница заключается в том, что при резонансном подключении последовательно с обмоткой трансформатора подключают резонансную LC цепочку. Однако ее появление в корне меняет процесс перекачки мощности. Уменьшатся потери, увеличится КПД, снизится нагрузка на входные электролиты и электромагнитные помехи уменьшатся. В данном случае драйверы на силовые транзисторы нужно применять только в случае если будут использованы MOSFET транзисторы, которые имеют емкость затвора более 5000 pF. IGBT могут обойтись лишь наличием импульсного трансформатора. Более подробные описания схем будут приводится в следующих статьях.
Управление выходным током может производится двумя способами – частотным и фазовым. Оба эти способы описывались в резонансном полумосте (смотри выше).
Применение
Полумостовая схема лучше всего подходит для относительно маломощных (до 500 Вт) источников питания с высоковольтным входом и низковольтным выходом. Большинство компьютерных блоков питания и импульсных зарядных устройств, построено по такой схеме. Примером может быть следующее зарядное устройство. Применение полумостовой схемы при низком входном напряжении ограничено тем, что в этом случае получаются высокие потери на силовых ключах, и нужны конденсаторы C10, C11 большой емкости, рассчитанные на большие токи.
Полный мост с дросселем рассеивания
Схема его ничем практически не отличается от схемы резонансного моста или полумоста, только вместо резонансной цепи LC последовательно с трансформатором включают не резонансную LC цепь. Емкость С, примерно С≈22мкф х 63В, работает как симметрирующий конденсатор, а индуктивное сопротивление дросселя L как реактивное сопротивление, величина которого будет линейно изменятся в зависимости от изменения частоты. Преобразователь управляется частотным способом. Как известно нам с электротехники, при увеличении частоты напряжения сопротивление индуктивности возрастет, что уменьшит ток в силовом трансформаторе. Довольно простой и надежный способ. Поэтому довольно большое количество промышленных инверторов строят по такому принципу ограничения выходных параметров.