§ 45. Расчёт сопротивления проводника. Удельное сопротивление
Мы знаем, что причиной электрического сопротивления проводника является взаимодействие электронов с ионами кристаллической решётки металла (§ 43). Поэтому можно предположить, что сопротивление проводника зависит от его длины и площади поперечного сечения, а также от вещества, из которого он изготовлен.
На рисунке 74 изображена установка для проведения такого опыта. В цепь источника тока по очереди включают различные проводники, например:
- никелиновые проволоки одинаковой толщины, но разной длины;
- никелиновые проволоки одинаковой длины, но разной толщины (разной площади поперечного сечения);
- никелиновую и нихромовую проволоки одинаковой длины и толщины.
Силу тока в цепи измеряют амперметром, напряжение — вольтметром.
Зная напряжение на концах проводника и силу тока в нём, по закону Ома можно определить сопротивление каждого из проводников.
Рис. 74. Зависимость сопротивления проводника от его размеров и рода вещества
Выполнив указанные опыты, мы установим, что:
- из двух никелиновых проволок одинаковой толщины более длинная проволока имеет большее сопротивление;
- из двух никелиновых проволок одинаковой длины большее сопротивление имеет проволока, поперечное сечение которой меньше;
- никелиновая и нихромовая проволоки одинаковых размеров имеют разное сопротивление.
Зависимость сопротивления проводника от его размеров и вещества, из которого изготовлен проводник, впервые на опытах изучил Ом. Он установил, что сопротивление прямо пропорционально длине проводника, обратно пропорционально площади его поперечного сечения и зависит от вещества проводника.
Как учесть зависимость сопротивления от вещества, из которого изготовляют проводник? Для этого вычисляют так называемое удельное сопротивление вещества.
Удельное сопротивление — это физическая величина, которая определяет сопротивление проводника из данного вещества длиной 1 м, площадью поперечного сечения 1 м2.
Введём буквенные обозначения: ρ — удельное сопротивление проводника, I — длина проводника, S — площадь его поперечного сечения. Тогда сопротивление проводника R выразится формулой
Из неё получим, что:
Из последней формулы можно определить единицу удельного сопротивления. Так как единицей сопротивления является 1 Ом, единицей площади поперечного сечения — 1 м2, а единицей длины — 1 м, то единицей удельного сопротивления будет:
Удобнее выражать площадь поперечного сечения проводника в квадратных миллиметpax, так как она чаще всего бывает небольшой. Тогда единицей удельного сопротивления будет:
В таблице 8 приведены значения удельных сопротивлений некоторых веществ при 20 °С. Удельное сопротивление с изменением температуры меняется. Опытным путём было установлено, что у металлов, например, удельное сопротивление с повышением температуры увеличивается.
Таблица 8. Удельное электрическое сопротивление некоторых веществ (при t = 20 °С)
Из всех металлов наименьшим удельным сопротивлением обладают серебро и медь. Следовательно, серебро и медь — лучшие проводники электричества.
При проводке электрических цепей используют алюминиевые, медные и железные провода.
Во многих случаях бывают нужны приборы, имеющие большое сопротивление. Их изготавливают из специально созданных сплавов — веществ с большим удельным сопротивлением. Например, как видно из таблицы 8, сплав нихром имеет удельное сопротивление почти в 40 раз большее, чем алюминий.
Фарфор и эбонит имеют такое большое удельное сопротивление, что почти совсем не проводят электрический ток, их используют в качестве изоляторов.
Вопросы
- Как зависит сопротивление проводника от его длины и от площади поперечного сечения?
- Как показать на опыте зависимость сопротивления проводника от его длины, площади поперечного сечения и вещества, из которого он изготовлен?
- Что называется удельным сопротивлением проводника?
- По какой формуле можно рассчитывать сопротивление проводников?
- В каких единицах выражается удельное сопротивление проводника?
- Из каких веществ изготавливают проводники, применяемые на практике?
Сопротивление материалов
Многочисленные эксперименты учёных показали, что сопротивление проводника зависит не только от его свойств, но и линейных характеристик. Эти результаты были подтверждены и при анализе протекания электрического тока. Выполнить его можно и самостоятельно, построив рассуждения следующим образом.
Пусть имеется проводник длиной L, который подключён параллельно к источнику напряжения. Тогда на его концах создастся разность потенциалов (напряжение), равняющаяся U. Через материал под действие эклектического поля потечёт электроток с силой I. Чтобы определить сопротивление проводника, нужно воспользоваться законом Ома, согласно которому: R 1 = U / I.
Теперь можно взять материал, аналогичный по свойствам первому, но в два раза его длиннее. Пускай этот проводник также будет подключён к источнику питания. При этом через него будет проходить ток, равный по силе I. Мысленно проводник можно разделить на 2 участка по L. Значит, электроток сначала будет протекать по первой его половинке, а после — второй.
Ток — направленное перемещение зарядов. Чтобы они начали своё движение, нужно полю совершить работу. Таким образом, заряд последовательного проходит 2 половины материала. Для обоих частей напряжение будет равняться U. Выполняемая суммарная работа будет в 2 раза больше по сравнению с первым случаем. Значит, на концах второго проводника возникнет напряжение, равняющееся 2U. То есть: R2 = 2U / I = 2* R1.
Из сказанного следует, что сопротивление проводника прямо пропорционально длине. Аналогичные рассуждения можно выполнить, изменяя площадь поперечного сечения. В итоге окажется, что R будет обратно ей пропорционально. Зависимость сопротивления можно записать так: R ~ L / S. Коэффициент пропорциональности не зависит от линейных размеров проводника, а только от материала, из которого он изготовлен, для строгого равенства в формулу был ведён параметр, названный удельным сопротивлением: R = ρ * L / S.
Коэффициент ρ — характеристика материала. Отсюда можно записать: ρ = R* S/ L, где:
- R — электрическое сопротивление однородного проводника;
- S — площадь поперечного сечения;
- L — длина материала.
Физический смысл удельного сопротивления проводника — сопротивление изготовленного из этого вещества однородного материала с единичной длиной и площадью поперечного сечения. В СИ величина измеряется в [Ом * м]. Зная её и размеры, выполнить нахождение сопротивления проводника не составит труда.
Теги
Акушерство Антиноцицептивное действие Бруцеллез Гурты Денежная оценка земель Земельный кадастр КЛЕЩЕЙ Киста Нарисна геометрія Пастереллез Половой цикл Реалізація зерна Сальмонеллез Случка Туберкулез Туберкулин Устройство территории аборт актиномикоз блохи бонитировка почв виробництво зерна гінекологія документ дрожжи ефективності виробництва жеребец животноводство заплідненость землепользование клещ косячная случка мтп оценка земель паратиф почва противоэрозионных ринок зерна самосогревания спермії столовые вина сухие вина тесты по химии шейка матки эндометрит
Зависимость сопротивления проводника от длины, площади поперечного сечения и материала.
На основании опытов было установлено, что сопротивление проводника прямо пропорционально его длине и обратно пропорционально его поперечному сечению
Где р — коэффициент пропорциональности, или Удельное сопротивление проводника, I — длина проводника, S — поперечное сечение проводника.
Удельным сопротивлением Является сопротивление проводника из данного вещества единичной длины и единичного поперечного сечения. Удельное сопротивление проводника зависит от материала проводника.
В СИ единица измерения удельного сопротивления
Зависимость сопротивления проводника от температуры
Сопротивление проводников зависит от температуры. Величина, характеризующая зависимость изменения сопротивления проводника от температуры, называется Температурным коэффициентом сопротивления И обозначается А. Температурный коэффициент сопротивления показывает, на какую часть первоначального сопротивления изменяется сопротивление этого проводника при нагревании от 0° С до Г С, то есть
Из этой формулы можно получить единицы измерения температурного коэффициента сопротивления
Проделав соответствующие преобразования, получим
Сопротивление всех металлов при нагревании возрастает, их температурные коэффициенты сопротивления положительны. Сопротивление растворов солей, кислот, щелочей, а также угля при нагревании уменьшается, их температурные коэффициенты отрицательны, для них формулу зависимости сопротивления от температуры можно записать так:
В формуле (1), заменив
Получим общую формулу сопротивления
Где р0 — удельное сопротивление проводника при 0° С. Если в формуле (2) заменить
То получим
Где Pt — удельное сопротивление проводника при температуре t° С.
Сверхпроводимость.
С приближением температуры чистых металлов к абсолютному нулю их сопротивление резким скачком падает до нуля (рис. 77).
Ток, идущий по замкнутому проводнику, при температурах, близких к абсолютному нулю, может циркулировать в нем достаточно долгое время. Такое явление называется Сверхпроводимостью.
Советуем изучить Расчет светодиодного освещения аквариума
Температурная зависимость ρ(Т)
Для большинства материалов проведены многочисленные эксперименты по измерению значений удельных сопротивлений. Данные по большинству проводников можно найти в справочных таблицах.
Удельное сопротивление металлов и сплавов, Ом*мм2/м
(при Т = 20С)
Серебро | 0,016 | Бронза (сплав) | 0,1 |
Медь | 0,017 | Олово | 0,12 |
Золото | 0,024 | Сталь (сплав) | 0,12 |
Алюминий | 0,028 | Свинец | 0,21 |
Иридий | 0,047 | Никелин (сплав) | 0,42 |
Молибден | 0,054 | Манганин (сплав) | 0,45 |
Вольфрам | 0,055 | Константан (сплав) | 0,48 |
Цинк | 0,06 | Титан | 0,58 |
Латунь (сплав) | 0,071 | Ртуть | 0,958 |
Никель | 0,087 | Нихром (сплав) | 1,1 |
Платина | 0,1 | Висмут | 1,2 |
Чаще всего приводятся значения ρ при нормальной, то есть комнатной температуре 20С. Но оказалось, что при повышении температуры удельное сопротивление возрастает по линейному закону в соответствии с формулой:
$ ρ(Т) = ρ0 * (1 + α*T)$ (6),
где: ρ — удельное сопротивление проводника при температуре 0С, α — температурный коэффициент удельного сопротивления, который тоже имеет для каждого вещества свое, индивидуальное, значение. Из формулы (6) следует, что коэффициент α имеет размерность или .
Рис. 2. Температурная зависимость удельного сопротивления проводника
В соответствии с законом Джоуля-Ленца при протекании электрического тока т выделяется тепло, а значит происходит рост температуры проводника. Кроме этого, в зависимости от области применения, электрические приборы могут работать как при пониженных (минусовых), так и при высоких температурах. Для точных расчетов электрических цепей необходимо учитывать зависимость ρ(Т). Величину α для конкретного материала можно узнать из справочной литературы.
Советуем изучить Как проверить резистор мультиметром
Рис. 3. Справочные значения температурного коэффициента удельного сопротивления проводников
От чего зависит сопротивление металла
Электрический ток по классическому определению – это направленное движение заряженных частиц. В металлах перемещаются электроны, если создать между двумя точками подключения источника питания разницу потенциалов. Этому процессу препятствуют примеси, поэтому проводимость лучше в однородном материале.
К сведению. Качественные проводники тока выпускают из электротехнической меди, которая содержит не более 0,01% сторонних примесей. Незначительная добавка алюминия (0,02-0,03%) уменьшает проводимость на 10-11%. При большой длине трассы существенно увеличиваются потери на передачу энергии.
Отрицательное влияние оказывают колебательные процессы атомов кристаллической решетки. При повышении температуры увеличивается амплитуда этих движений, что создает дополнительные препятствия перемещению зарядов. Для компенсации этого явления резисторы создают из специальных сплавов. Правильно подобранные пропорции материалов обеспечивают стабильность электрического сопротивления в расчетном температурном диапазоне.
Формула как найти
Согласно положению из любого учебного пособия по электродинамики, удельное сопротивление материала проводника формула равна пропорции общего сопротивления проводника на площадь поперечного сечения, поделенного на проводниковую длину
Важно понимать, что на конечный показатель будет влиять температура и степень материальной чистоты. К примеру, если в медь добавить немного марганца, то общий показатель будет увеличен в несколько раз
Главная формула расчета
Интересно, что существует формула для неоднородного изотропного материала. Для этого нужно знать напряженность электрополя с плотностью электротока. Для нахождения нужно поделить первую величину на другую. В данном случае получится не константа, а скалярная величина.
Есть другая, более сложная для понимания формула для неоднородного анизотропного материала. Зависит от тензорного координата.
Важно отметить, что связь сопротивления с проводимостью также выражается формулами. Существуют правила для нахождения изотропных и анизотропных материалов через тензорные компоненты
Они показаны ниже в схеме.
Связь с проводимостью, выраженная в физических соотношениях
Условия, определяющие сопротивление проводников
При определении сопротивления учитывается ряд характеристик:
- сечение элемента;
- длина проводника;
- удельное сопротивление;
- тип материала.
Предметы с высоким сопротивлением практически не проводят ток. Также есть обратная зависимость, которая прописана в законе Ома. Для расчета показателя учитывается электрическая проводимость. Она показывает возможность проводника принимать электрический ток.
Проводимость электрического тока
Выбор сечения кабелей
Для крупных расчетов можно использовать специализированный калькулятор на справочном сайте либо соответствующее программное обеспечение. Следующий алгоритм применяют для последовательного вычисления рабочих параметров по формулам:
- при передаче в подключенную нагрузку мощности P = 1 600 Вт в линии с напряжением U = 220 V постоянный ток (I) определяют следующим образом: I = P/U ≈ 7,27А;
- сопротивление медного проводника (в обе стороны) длиной 800 м и сечением 2,5 мм кв.: R = (2*I*p)/S = (2*800*0,0175)/2,5 = 11,2 Ом;
- потери по напряжению в этой трассе: ΔU = (2*L*I)/((1/p)*S) = (2*800*7,27)/((1/0,0175)*2,5) = 11 520/ 142,86 = 80,63 V.
При необходимости последнее выражение несложно математически преобразовать для выбора площади поперечного сечения проводника по суммарному значению подключаемой нагрузки:
S = (2*I*L)/((1/p)*ΔU.
В рассмотренном примере потери напряжения составляют более 36%. Этот результат свидетельствует о необходимости корректировки расчета сопротивления проводника. По действующим нормативам допустимо уменьшение контрольного параметра не более, чем на 5 %. Увеличив диаметр провода, можно получить необходимый результат. При сечении 19 мм кв. напряжение уменьшится до 209,41 V (4,81%).
С учетом увеличенного сопротивления алюминиевого провода предполагаются пропорциональные изменения потерь. Выполнив аналогичный расчет, можно получить рекомендованное сечение 31 мм кв. Использование такого проводника в аналогичных условиях снизит напряжение до 209,2 V, что позволит обеспечить соответствие нормативам – 4,92%.
К сведению. Для проверки расчетных данных можно использовать мультиметр. Измерения выполняют в соответствующем диапазоне с учетом амплитуды сигнала, переменного (постоянного) тока.
Измерение сопротивления кабеля мультиметром
При подключении источника питания переменного тока алгоритм вычислений усложняется. Для таких исходных условий пользуются формулой:
ΔU = ((Pа * Rа + Pр * Rи) *L)/ U,
где:
- Pа (Pр) – активная (реактивная) мощность;
- Rа (Rи) – относительное активное (индуктивное) сопротивление линии в Ом на километр.
Для определенных материалов проводников исходные данные берут из справочника. По аналогии с упомянутыми нормативами уменьшение напряжения не должно быть в общем случае более 5%. Дополнительные ограничения применяют с учетом особенностей электрических сетей и подключаемых потребителей (от 1% до 12%). Действующие правила уточняют по тексту последней редакции ПУЭ.
Приведенные итоги расчетов убедительно подтверждают преимущества меньшего удельного сопротивления медного провода. При использовании алюминиевого аналога значительно увеличивается количество материала для передачи электроэнергии с нормативными потерями. Для комплексного анализа следует учитывать лучшие показатели меди по прочности, гибкости.
Алюминий отличается меньшей стоимостью, легкостью. Но при работе с этим материалом следует исключить вибрационные воздействия и перемещения в процессе эксплуатации. Особо тщательно проектируют изгибы, чтобы сохранить целостность проводника. Электрический контакт нарушается образованием окислов на поверхности изделий, изготовленных из этого металла.
К сведению. В определенных ситуациях многое будет значить свободное место для прокладки трассы. По экономии пространства преимущественными параметрами обладает медь.
Выбор сечения проводника по допустимому нагреву
По мере увеличения силы тока повышается температура проводящего металла. На определенном уровне повреждается слой защитной изоляции, созданный из полимеров. Это провоцирует короткие замыкания и образование пламени. Опасные ситуации предотвращают корректным расчетом площади поперечного сечения. Определенное значение имеет способ прокладки (совместный/ раздельный).
Выбор кабельных изделий с учетом нагрева
Выбор сечения по потерям напряжения
Как показано в расчетах, при большой длине трасы нужно учитывать снижение напряжения и соответствующие энергетические потери. В крупных проектах рассматривают всю цепь тока с распределительными устройствами и подключаемыми нагрузками.
Выбор по допустимым потерям
Для точного определения подходящей кабельной продукции рассматривают особенности процесса эксплуатации. Делают необходимый запас, чтобы предотвратить аварийные ситуации при подключении новых потребителей и бросках напряжения в сети питания.
Виды
Проводником называют среду или предмет, который способен проводить электрический ток. Внутри него, при подключении к источнику энергии, начинает активно двигаться заряженная частица. Амперметр показывает возрастание электрического напряжения в цепи. Рассматривая проводники разных типов, учитывается удельная электропроводность и тип материала:
- медь;
- алюминий;
- метал;
- золото;
- сплав никеля и хрома.
Вам это будет интересно Обозначение ват
В научной среде есть понятие сверхпроводника, который считается идеальным. Он обладает значительным углом диэлектрической потери. Когда ток идёт от цепи, учитывается процент смещения. У сверхпроводника данный параметр минимален.
Из меди
Медь относится к компонентам 11 группы из таблицы химических элементов. По классификации он является пластинчатым, встречается в разных видах. Зачастую вещество имеет розовый оттенок. В электротехнике медь отличается низким удельным сопротивлением и лежит на одной нише с серебром, золотом.
Серебро и золото
Материал применим при изготовлении проводки, а также печатных плат. Ещё вещество востребовано при изготовлении электроприводов. Рассматривая сложные управляемые, электромеханические системы, заметно, что у них используются обмотки с низким удельным сопротивлением.
Если оценивать силовые трансформаторы, у них также применяется данный металл, однако он зачастую используется с примесями. Это необходимо, чтобы снизить показатель электропроводимости. В печатных платах медь используется на пару с алюминием. Рассматривая радиодетали, востребованными остаются сплавы на основе меди, которые также отличаются низким сопротивлением.
Разбирая персональные компьютеры, вещество встречается с бронзой либо латунью. Также используются добавки из цинка либо никеля. Чтобы повысить упругость проводника, применяются другие материалы, такие как олово, цинк. По таблице удельного сопротивления, веществу присвоен показатель 0,0157 Ом.
Свойства меди
Из алюминия
Среди элементов 13 группы в таблице выделяется алюминий. Он является отличным проводником в цепи, изготовлен из парамагнитного металла. По цвету наблюдается серебристый оттенок. Проводник хорошо поддается механической обработке. Помимо значительной электропроводимости, отмечается коррозийная стойкость.
При термической обработке образуется оксидная пленка, которая защищает поверхность. В природе предусмотрены различные соединения алюминия. Если рассматривать стандартную проволоку небольшого сечения, она востребована в электрических катушках. Вещество обладает низкой плотностью, а также массой, поэтому аналоги сложно подобрать. Используя алюминий в движущихся элементах, можно повысить их производительность.
Зачастую проводник встречается в жестких дисках, а также аудиосистемах. Востребованными остаются проволоки, покрытые слоем лака. Встречаются эмалированные аналоги, отличающиеся повышенной защищенностью. В качестве изоляции используется резина, берилл. Производители выпускают проводники с сечением от 0.003 мм.
Свойства алюминия
Помимо катушек индуктивности проволока может устанавливаться в индукторах, громкоговорителях, наушниках. Касательно соединений, встречаются варианты с алунитами. Дополнительная информация о физических свойствах:
- низкая температура плавления;
- высокая теплоемкость;
- значительная твёрдость;
- слабый парамагнетик;
- широкий температурный диапазон.
Вам это будет интересно Особенности поперечного сечения
Алюминий встречается в печатных платах, поскольку поддается в штамповке. Коррозионная стойкость — дополнительное преимущество. Алюминиевые проводники являются популярными и востребованными в промышленности. Удельное сопротивление — 0,028 Ом. Также необходимо рассмотреть недостаток — значительное содержание примесей.
Из металла
Среди металлов, распространенными типами проводников считаются следующие:
- свинец;
- олово;
- платина;
- никель;
- вольфрам.
Свинец — это элемент из 14 группы, который может использоваться в качестве проводника. У него предельная плотность 11.35 грамм на кубический метр. Область применения ограничена, поскольку материал токсичен и относится к тяжелым металлам. История происхождения формулы неясна, есть лишь догадки.
Группы металлов
Если говорить о проводниковых элементах, то зачастую применяется нитрат свинца. В источниках тока, резервных блоках встречается версия с хлоридом. Рассматривая неорганические соединения, выделяется материал теллурид. Он подходит в качестве термоэлектрического проводника, поэтому используется в электростанциях разной мощности. Ещё металлический элемент востребован в холодильниках.
Если детально рассматривать теллурид, к числу особенности стоит приписать значительную диэлектрическую проницаемость. В составе помимо свинца имеется олово и теллур. По отдельности вещества встречаются в фоторезисторах и диодах. Если разбирать полупроводниковые приборы, элементы содержатся в стабилизаторах и указывают направление тока.
Важно! Олово — это проводник из 14 группы химических элементов. Материал безопасен, не содержит токсичных веществ.
Наравне с золотом, олово обладает отличными антикоррозионными свойствами. Зачастую в технике применяется дисульфид. Наиболее высокий показатель сопротивления показывает двуокись олова. В аккумуляторах он используется в чистом виде. Рассматривая гальванические элементы, стоит упомянуть про марганцево-оловянный диоксид.
Платина — это проводника с десятой группы химических элементов. Представленный металл имеет электросопротивление 0,098 Ом, и отличается повышенной плотностью. Если рассматривать сферу применения, то зачастую вещество встречается в лазерной технике. Речь идет о принтерах, а также измерительных приборах.
Свойства платины
Дополнительно платина используется в электромагнитных реле. В представленных автоматических устройствах он выступает проводником. Речь идет о механических, тепловых либо оптических реле. В электронных датчиках платина содержится в меньшем количестве, однако используется за счёт широкого диапазона температур. В частности, можно рассмотреть электронный термометр сопротивления. Резистивный элемент по большей части состоит из платины.
Вам это будет интересно Особенности свободной энергии
Из золота
Удельное сопротивление золота 0,023 Ом. Материал относится к первой группе металлов и по физическим свойствам является мягким. Золото встречается с примесями и в чистом виде. Плотность составляет 19,32 г/см³, сфера применения широка. В промышленности проводник востребован в качестве припоя.
Припой золото
Его разрешается наносить на различные поверхности, он служит отличным материалом для соединения заготовок, поскольку наблюдается низкая температура плавления. Также золото востребовано для защиты от коррозии.
Недостатки:
- мягкость материала;
- подвержен точечной коррозии.
Если использовать материал с добавками, то снижается температура плавления. Также это оказывает воздействие на механические свойства вещества.
Золото с добавками
Удельное сопротивление различных металлов
Чтобы рассчитать потери, которые обеспечивает определенная длина проводника, удобно оперировать удельными параметрами. Базовая формула для вычисления электрического сопротивления:
R = p*(L/S),
где:
- L – длина в метрах;
- S – площадь поперечного сечения, мм кв.;
- p – удельное сопротивление кабеля, изготовленного из определенного материала, (Ом*мм кв.)/м.
При необходимости сечение можно вычислить по диаметру (D), применив известную формулу из геометрии:
S = (π * D2)/4.
Если микрометр отсутствует, применяют намотку провода на цилиндрический инструмент (отвертку, карандаш). Далее измеряют длину созданной катушки обычной линейкой, делят полученное значение на количество витков.
Медь и алюминий
Для значительного изменения сопротивления провода достаточно минимального количества примесей. Однако даже при высокой степени очистки медь гораздо лучше проводит электрический ток, по сравнению с алюминием. Ниже приведены значения удельного сопротивления соответствующих материалов. С применением справочных сведений несложно проверить потери при выборе кабельной продукции для формирования трассы определенной длины:
- pм = 0,0175;
- pа = 0,028.
Советуем изучить Переделка шуруповерта на литиевые аккумуляторы 18650
Другие металлы
Удельное сопротивление нихрома составляет от 1,04 до 1,42 (Ом*мм кв.)/метр. Большой разброс параметров объясняется пропорциональным изменением составляющих сплава. Такие материалы применяют для создания нагревательных элементов, так как целостность изделий сохраняется при высокой температуре. С учетом высокого сопротивления нихромовой проволоки на единицу длины этот кабель идеально подходит для создания «теплого пола».
Особенности других материалов (удельное сопротивление Ом*мм кв.)/м):
- золото (0,023) обеспечивает хорошую проводимость и устойчивость к окислению, но стоит дорого;
- ограниченное применение серебра (0,015) также объясняется высокой ценой;
- высокая температура (+3 422°C) плавления вольфрама (0,05) позволяет применять его для изготовления спиралей классических ламп накаливания;
- константан (0,5) применяют для создания резисторов.
Как рассчитать сопротивление
Экспериментальные данные на большом количестве образцов показали, что:
- Сопротивление R , обратно пропорционально поперечной площади образца S, то есть $ R ∼ {1\over S } $;
- Сопротивление R прямо пропорциональна длине образца, то есть чем больше длина образца L, тем больше его сопротивление, то есть $ R∼ L$;
- Так как значения R у образцов из разных материалов с одинаковыми размерами S и L отличались, то была введена новая физическая величина, названная удельным электрическим сопротивлением ρ.
Полученные данные хорошо описывались формулой:
$ R = ρ * {L\over S} $ (2).
Из уравнения (2) следует формула удельного электрического сопротивления:
$ ρ = R * { S \over L } $ (3).
Значения ρ для большинства веществ можно найти, воспользовавшись справочниками в печатном или электронном виде.
Рис. 2. Таблица удельных электрических сопротивлений различных веществ при температуре 200С.
Зависимость от геометрии
Из раздела с описанием удельных параметров понятно, что электрическое сопротивление проводника зависит от длины. Если взять образец из серебра (площадь нормированного сечения 1 кв. мм) при длине 6,8 м, несложно вычислить значение R = 6,8 * 0,016 = 0,1088 Ом.
Аналогичным образом решают иные практические задачи. Чтобы создать провод с электросопротивлением 100 Ом понадобится серебряная жила длиной 6 250 м = 100/ 0,016. Если применить металлический проводник из железа, длина составит 833 м = 100/0,12.
Следующий решающий фактор – площадь поперечного сечения. Для наглядности можно использовать пример с перекачиванием жидкости из основного бака в две разные емкости. Создать необходимый напор несложно поднятием главного резервуара на небольшую высоту. Применив трубки с разным диаметром протоков, можно увидеть разницу в скорости заполнения контрольных объемов. Если показания будут измеряться при желании несложно составить пропорциональные зависимости с учетом исходных геометрических параметров транспортных каналов.
Размерность проводников также имеет значение. Электрическое сопротивление (R) равно удельному значению для определенного материала (Rуд), умноженному на длину (L) и деленому на соответствующее поперечное сечение (S). Если известен только диаметр, то для круглой жилы можно применить классическую формулу из школьного курса геометрии:
S = (π * d2)/4 = (3,14 * d2)/4.
Длину вычисляют по преобразованному выражению:
L = S * (R/ Rуд).
Эти пропорции демонстрируют, от чего зависит сопротивление.
Электрическое сопротивление и проводимость
26 марта 2013. Категория: Электротехника.
При замыкании электрической цепи, на зажимах которой имеется разность потенциалов, возникает электрический ток. Свободные электроны под влиянием электрических сил поля перемещаются вдоль проводника.
В своем движении электроны наталкиваются на атомы проводника и отдают им запас своей кинетической энергии.
Скорость движения электронов непрерывно изменяется: при столкновении электронов с атомами, молекулами и другими электронами она уменьшается, потом под действием электрического поля увеличивается и снова уменьшается при новом столкновении.
В результате этого в проводнике устанавливается равномерное движение потока электронов со скоростью нескольких долей сантиметра в секунду. Следовательно, электроны, проходя по проводнику, всегда встречают с его стороны сопротивление своему движению. При прохождении электрического тока через проводник последний нагревается.
Электрическое сопротивление
Электрическим сопротивлением проводника, которое обозначается латинской буквой r, называется свойство тела или среды превращать электрическую энергию в тепловую при прохождении по нему электрического тока.
На схемах электрическое сопротивление обозначается так, как показано на рисунке 1, а.
Рисунок 1. Условное обозначение электрического сопротивления |
Переменное электрическое сопротивление, служащее для изменения тока в цепи, называется реостатом. На схемах реостаты обозначаются как показано на рисунке 1, б.
В общем виде реостат изготовляется из проволоки того или иного сопротивления, намотанной на изолирующем основании.
Ползунок или рычаг реостата ставится в определенное положение, в результате чего в цепь вводится нужное сопротивление.
Длинный проводник малого поперечного сечения создает току большое сопротивление. Короткие проводники большого поперечного сечения оказывают току малое сопротивление.
Если взять два проводника из разного материала, но одинаковой длины и сечения, то проводники будут проводить ток по-разному. Это показывает, что сопротивление проводника зависит от материала самого проводника.
Температура проводника также оказывает влияние на его сопротивление. С повышением температуры сопротивление металлов увеличивается, а сопротивление жидкостей и угля уменьшается. Только некоторые специальные металлические сплавы (манганин, констаитан, никелин и другие) с увеличением температуры своего сопротивления почти не меняют.
Итак, мы видим, что электрическое сопротивление проводника зависит от: 1) длины проводника, 2) поперечного сечения проводника, 3) материала проводника, 4) температуры проводника.
За единицу сопротивления принят один Ом. Ом часто обозначается греческой прописной буквой Ω (омега). Поэтому вместо того чтобы писать «Сопротивление проводника равно 15 Ом», можно написать просто: r = 15 Ω. 1 000 Ом называется 1 килоом (1кОм, или 1кΩ), 1 000 000 Ом называется 1 мегаом (1мгОм, или 1МΩ).
При сравнении сопротивления проводников из различных материалов необходимо брать для каждого образца определенную длину и сечение. Тогда мы сможем судить о том, какой материал лучше или хуже проводит электрический ток.
1. Сопротивление проводников
Удельное электрическое сопротивление
Сопротивление в омах проводника длиной 1 м, сечением 1 мм² называется удельным сопротивлением и обозначается греческой буквой ρ (ро).
В таблице 1 даны удельные сопротивления некоторых проводников.
Таблица 1
Удельные сопротивления различных проводников
Материал проводника | Удельное сопротивление ρ в |
Серебро Медь Алюминий Вольфрам Железо Свинец Никелин (сплав меди, никеля и цинка) Манганин (сплав меди, никеля и марганца) Константан (сплав меди, никеля и алюминия) РтутьНихром (сплав никеля, хрома, железа и марганца) | 0,016 0,0175 0,03 0,05 0,13 0,2 0,42 0,43 0,5 0,941,1 |
Из таблицы видно, что железная проволока длиной 1 м и сечением 1 мм² обладает сопротивлением 0,13 Ом. Чтобы получить 1 Ом сопротивления нужно взять 7,7 м такой проволоки. Наименьшим удельным сопротивлением обладает серебро.
1 Ом сопротивления можно получить, если взять 62,5 м серебряной проволоки сечением 1 мм². Серебро – лучший проводник, но стоимость серебра исключает возможность его массового применения. После серебра в таблице идет медь: 1 м медной проволоки сечением 1 мм² обладает сопротивлением 0,0175 Ом.
Чтобы получить сопротивление в 1 Ом, нужно взять 57 м такой проволоки.
Химически чистая, полученная путем рафинирования, медь нашла себе повсеместное применение в электротехнике для изготовления проводов, кабелей, обмоток электрических машин и аппаратов. Широко применяют также в качестве проводников алюминий и железо.
Сопротивление проводника можно определить по формуле:
где r – сопротивление проводника в омах; ρ – удельное сопротивление проводника; l – длина проводника в м; S – сечение проводника в мм².
Пример 1. Определить сопротивление 200 м железной проволоки сечением 5 мм².
Пример 2. Вычислить сопротивление 2 км алюминиевой проволоки сечением 2,5 мм².
Из формулы сопротивления легко можно определить длину, удельное сопротивление и сечение проводника.
Пример 3. Для радиоприемника необходимо намотать сопротивление в 30 Ом из никелиновой проволоки сечением 0,21 мм². Определить необходимую длину проволоки.
Пример 4. Определить сечение 20 м нихромовой проволоки, если сопротивление ее равно 25 Ом.
Пример 5. Проволока сечением 0,5 мм² и длиной 40 м имеет сопротивление 16 Ом. Определить материал проволоки.
Материал проводника характеризует его удельное сопротивление.
По таблице удельных сопротивлений находим, что таким сопротивлением обладает свинец.
Выше было указано, что сопротивление проводников зависит от температуры. Проделаем следующий опыт. Намотаем в виде спирали несколько метров тонкой металлической проволоки и включим эту спираль в цепь аккумулятора.
Для измерения тока в цепь включаем амперметр. При нагревании спирали в пламени горелки можно заметить, что показания амперметра будут уменьшаться.
Это показывает, что с нагревом сопротивление металлической проволоки увеличивается.
У некоторых металлов при нагревании на 100° сопротивление увеличивается на 40 – 50 %. Имеются сплавы, которые незначительно меняют свое сопротивление с нагревом.
Некоторые специальные сплавы практически не меняют сопротивления при изменении температуры.
Сопротивление металлических проводников при повышении температуры увеличивается, сопротивление электролитов (жидких проводников), угля и некоторых твердых веществ, наоборот, уменьшается.
Способность металлов менять свое сопротивление с изменением температуры используется для устройства термометров сопротивления. Такой термометр представляет собой платиновую проволоку, намотанную на слюдяной каркас. Помещая термометр, например, в печь и измеряя сопротивление платиновой проволоки до и после нагрева, можно определить температуру в печи.
Изменение сопротивления проводника при его нагревании, приходящееся на 1 Ом первоначального сопротивления и на 1° температуры, называется температурным коэффициентом сопротивления и обозначается буквой α.
Если при температуре t0 сопротивление проводника равно r0, а при температуре t равно rt, то температурный коэффициент сопротивления
Примечание. Расчет по этой формуле можно производить лишь в определенном интервале температур (примерно до 200°C).
Приводим значения температурного коэффициента сопротивления α для некоторых металлов (таблица 2).
Таблица 2
Значения температурного коэффициента для некоторых металлов
Металл | α | Металл | α |
Серебро Медь Железо ВольфрамПлатина | 0,0035 0,0040 0,0066 0,00450,0032 | Ртуть Никелин Константан НихромМанганин | 0,0090 0,0003 0,000005 0,000160,00005 |
Из формулы температурного коэффициента сопротивления определим rt:
rt = r0 [1 ± α (t – t0)].
Пример 6. Определить сопротивление железной проволоки, нагретой до 200°C, если сопротивление ее при 0°C было 100 Ом.
rt = r0 [1 ± α (t – t0)] = 100 (1 + 0,0066 × 200) = 232 Ом.
Пример 7. Термометр сопротивления, изготовленный из платиновой проволоки, в помещении с температурой 15°C имел сопротивление 20 Ом. Термометр поместили в печь и через некоторое время было измерено его сопротивление. Оно оказалось равным 29,6 Ом. Определить температуру в печи.
Электрическая проводимость
До сих пор мы рассматривали сопротивление проводника как препятствие, которое оказывает проводник электрическому току. Но все же ток по проводнику проходит. Следовательно, кроме сопротивления (препятствия), проводник обладает также способностью проводить электрический ток, то есть проводимостью.
Чем большим сопротивлением обладает проводник, тем меньшую он имеет проводимость, тем хуже он проводит электрический ток, и, наоборот, чем меньше сопротивление проводника, тем большей проводимостью он обладает, тем легче току пройти по проводнику. Поэтому сопротивление и проводимость проводника есть величины обратные.
Из математики известно, что число, обратное 5, есть 1/5 и, наоборот, число, обратное 1/7, есть 7. Следовательно, если сопротивление проводника обозначается буквой r, то проводимость определяется как 1/r. Обычно проводимость обозначается буквой g.
Электрическая проводимость измеряется в (1/Ом) или в сименсах.
Пример 8. Сопротивление проводника равно 20 Ом. Определить его проводимость.
Если r = 20 Ом, то
Пример 9. Проводимость проводника равна 0,1 (1/Ом). Определить его сопротивление,
Если g = 0,1 (1/Ом), то r = 1 / 0,1 = 10 (Ом)
Активное сопротивление проводов и кабелей
Из электротехники известно, что полное сопротивление при равных условиях переменному и постоянному току будут отличаться. Касается это также проводов и кабелей. Это вызвано тем, что переменный ток распределяется по сечению неравномерно (поверхностный эффект). Однако для проводов из цветных металлов и с частотой переменного напряжения 50 Гц этот эффект не оказывает слишком большого влияния и им можно пренебречь. Таким образом, при расчете проводников из цветных металлов, их сопротивления переменному и постоянному току принимаются равными.
На практике активное сопротивление медных и алюминиевых проводников рассчитывают по формуле:
Где: l – длина в км, γ – удельная проводимость материала провода м/ом∙мм2, r – активное сопротивление 1 км провода на фазу Ом/км, s – площадь поперечного сечения, мм2.
Величина r, как правило, берется из таблиц справочников.
На активное сопротивление провода влияет и температура окружающей среды. Величину rпри температуре Θ можно определить по формуле:
Где: α – температурный коэффициент сопротивления; r20 – активное сопротивление при температуре 20 С, γ20 – удельная проводимость при температуре в 20 С.
Стальные провода обладают значительно большими активными сопротивлениями, чем аналогичные провода из цветных металлов. Его увеличение обусловлено значительно меньшей величиной удельной проводимости и поверхностным эффектом, который у стальных проводов выражен гораздо более ярко, чем у алюминиевых или медных. Более того, в стальных проводах присутствуют потери активной энергии на вихревые токи и перемагничивание, что в схемах замещения линий учитывают дополнительной составляющей активного сопротивления.
Активное сопротивление стальных проводов (в отличии от проводов из цветных металлов) сильно зависит от величины протекаемого тока, поэтому использовать постоянное значение удельной проводимости при расчетах нельзя.
Активное сопротивление стальных проводов в зависимости от протекающего тока аналитически выразить весьма трудно, поэтому для его определения используют специальные таблицы.
Единицы измерения удельного сопротивления
Из уравнения (3) следует, что в Международной системе СИ единицей измерения ρ будет (Ом*м), так как сопротивление измеряется в омах, а длина и площадь — в метрах и метрах квадратных соответственно. То есть единица удельного сопротивления равна сопротивлению образца площадью 1 м2 и длиной 1 м. Но на практике эта единица оказалась не очень удобной из-за слишком больших числовых значений. Поэтому для электротехнических расчетов чаще используют внесистемную единицу (Ом*мм2/м), для которой площадь поперечного сечения берется в мм2. Характерные размеры сечений соединительных проводов и кабелей лежат в диапазоне 1-15 мм2, чем и объясняется удобство применения внесистемной единицы.
Алюминиевые провода устойчивы к коррозии, имеют низкое удельное сопротивление 0,026 (Ом*мм2/м) и небольшой вес на метр длины, что делает этот материал очень востребованным при изготовлении проводов и кабелей, работающих за пределами помещений. Недостатком чисто алюминиевой проводки является потеря прочности (целостности) при изгибах и скручиваниях. Решение этой проблемы было найдено путем вплетения в провода высоковольтных линий электропередач небольшого количества токопроводящих стальных нитей, имеющих высокие показатели прочности ко всем видам нагрузок. Это особенно важно при сильных порывах ветра, и при образовании наледи на проводах в зимнее время.
Расчёт сопротивления проводника
Выше были рассмотрены упрощенные методики, которые надо корректировать с учетом реальных условий. Так, существенное влияние на проводимость материалов оказывает температура. В серийных проводниках (медь, алюминий) значение данного параметра увеличивается в пропорции 0,3-0,5% на каждый градус. В составах на основе угля и электролитах наблюдается обратный эффект – уменьшение сопротивления.
Без удерживающих струн и других приспособлений для фокусов обеспечивается настоящая левитация с применением сверхпроводимости
Показанный на рисунке эксперимент можно воспроизвести, понизив температуру металла до «абсолютного нуля» (-273°C). При таком экстремальном охлаждении атомарная решетка фиксируется в стабильном положении.
Это состояние создает идеальные условия для перемещения электронов. Отсутствие препятствий сопровождается минимальными потерями, что объясняет перспективность направления для создания эффективных линий передачи энергии. Пример на рисунке демонстрирует улучшенные эксплуатационные параметры транспортных коммуникаций. В данном случае можно исключить силы трения.
Комбинация трубы с безвоздушным пространством и сверхпроводимости улучшает характеристики перспективных транспортных систем
Понятно, что для улучшения экономических показателей необходимо повысить рабочую температуру при сохранении хорошей проводимости. Однако новейшие научные достижения в соответствующей области позволяют рассчитывать на положительный результат в близком будущем.
Следует подчеркнуть! На практике могут понадобится разные технологии вычислений. Например, материал неизвестен. Сложно идентифицировать его по внешним признакам. Для качественного химического лабораторного анализа, кроме соответствующих навыков, необходимо специальное оснащение.
Однако при необходимости нетрудно вывести удельный показатель:
Rуд = R * S /L.
Геометрические параметры измеряют стандартными инструментами (линейкой, штангенциркулем). По типовой схеме измерений с помощью мультиметра уточняют электрическое сопротивление. Для вычисления Rуд пользуются представленной выше формулой. В справочнике выбирают позицию, соответствующую результату расчета. По такой же методике можно определить иные неизвестные значения, например, длину кабеля в подземной трассе.
В реальных расчетах для повышения точности учитывают реактивные компоненты проводников. Например, индуктивность длинной прямой линии определяют по формуле:
И = (m0/2π) * L *(mc * ln(L/r) +1/4m,
где:
- m – магнитная проницаемость материала (о – постоянная, с – окружающей среды);
- r и L – радиус и длина проводника, соответственно.
При повышении частоты приходится учитывать растекание тока в поверхностной зоне и вихревые изменения.
Представленные теоретические знания пригодятся для расчета и создания реостата – прибора с регулируемым сопротивлением. Они нужны для предотвращения электротравм с применением точного расчета защитных цепей и специализированных автоматов (предохранителей).
Советуем изучить Стандарт УГО
Понятие электрического сопротивления проводника
Классическое определение объясняет электрический ток движением «свободных» (валентных) электронов. Его обеспечивает созданное источником электрическое поле. Перемещение в металле затрудняют не только нормальные компоненты кристаллической решетки, но и дефектные участки, примеси, неоднородные области. В ходе столкновений с препятствиями за счет перехода импульса в тепловую энергию происходит повышение температуры.
Наглядный пример – нагрев воды кипятильником
В газах, электролитах и других материалах несколько отличная физика явления. Линейные зависимости наблюдаются в металлах и других проводниках. Базовые соотношения выражены известной формулой закона Ома:
R (электрическое сопротивление) = U (напряжение)/ I (сила тока).
Для удобства часто используют обратную величину, проводимость (G = 1/R). Она обозначает способность определенного материала пропускать ток с определенными потерями.
Советуем изучить Прибор для измерения силы
Для упрощения иногда применяют пример с водопроводом. Движущаяся жидкость – аналог тока. Давление – эквивалент напряжения. Уменьшением (увеличением) поперечного сечения или положением запорного устройства определяют условия перемещения. Подобным образом изменяют основные параметры электрических цепей с помощью сопротивления (R).
К сведению. Количество жидкости, проходящее за единицу времени через контрольное сечение трубы, – эквивалент электрической мощности.
Изменения проводника при увеличении длины
Во время испытаний замечено, что при увеличении длины проводника его электрическое сопротивление увеличивается. Для проведения эксперимента, необходимо выбрать заготовки из одинакового материала. К примеру, это может быть проволока из никелина. Для считывания параметров используется амперметр, который подключен к зажимам.
Устанавливая заготовки меньшей длины, отмечено, что ток в цепи увеличивается. Даже на одном изделии можно поиграться с амперметром. Поставив щуп на середину заготовки, к примеру, может отображаться значение 50 ампер.
Показатель амперметра
Интересно! Если отводить его в сторону, к краю, чтобы увеличить дальность держателя, показатель тока будет снижаться. Тоже самое, касается проводников из других материалов.
Зависимость от свойств напряжения
После простого преобразования основной формулы можно составить корректное выражения для напряжения:
U = I * R.
Источник тока генерирует электричество. Подключенный резистор потребляет энергию с трансформацией в тепло. Для подержания определенной силы тока необходимо установить соответствующее напряжение.
Измерительная схема, графики
На графиках показаны вольтамперные характеристики разных приборов. Первые два демонстрируют линейные зависимости, в которых изменяется только угол наклона прямой линии (зависимость от электрического сопротивления резистора).
Если подключить полупроводниковый диод, график существенно изменится. По рисунку можно определить малое сопротивление в области положительных значений U. Однако после изменения полярности увеличение отрицательного напряжения не сопровождается аналогичным изменением силы тока. Одностороннюю проводимость, в частности, используют для выпрямления сигналов.
На последнем графике сдвинутая точка перехода нулевого значения силы тока обозначает ЭДС источника питания. Как и в предыдущем примере, небольшой угол по отношению к вертикали показывает малое внутреннее сопротивление АКБ.
Зависимость от свойств напряжения
Напряжение – это главная движущая сила электричества. Напряжение первично. Фактически это среда, в которой протекают разнообразные процессы, связанные с электрическим током. Важнейшей является связь электрического тока с электромагнитным полем. А его параметры, в свою очередь, определяются не только напряжением, но и пространственно-геометрическими характеристиками проводника.
Даже в том случае, когда проводник – это прямой отрезок проволоки в составе электрической цепи, его положение в пространстве при достаточно высоких частотах напряжения будет заметно влиять на величину его сопротивления. Это связано с тем, что в этих условиях проявляются его индуктивность и емкость, существующие лишь при переменном напряжении. Эти параметры проводника именуются реактивным сопротивлением, и также приводят к потерям электроэнергии.
Следовательно, если проводник находится под воздействием переменного напряжения, его сопротивление также зависит как от частоты этого напряжения, так и от его индуктивно-емкостных параметров.
Активное СП при этом остается в силе. А сопротивление проводника в целом именуется импедансом. Его принято обозначать буквой Z и рассчитывать с использованием комплексных чисел. Это довольно-таки специфические расчеты, которыми не стоит утомлять читателя нашей статьи. Но чтобы читатель в этом утверждении не усомнился, далее приведем формулу, по которой в общем случае рассчитывается импеданс:
Формула
Какие бывают виды электрического тока в быту
Форма сигнала токов зависит от работы источника напряжения и сопротивления среды, через которую проходит сигнал. Чаще всего на практике домашнему мастеру приходится сталкиваться со следующим видами:
- постоянный сигнал, вырабатываемый от аккумуляторов или гальванических элементов;
- синусоидальный, создаваемый промышленными генераторами частоты 50 герц;
- пульсирующий, образуемый за счет преобразований различных блоков питания;
- импульсный, проникающий в бытовую сеть за счет разряда молний в воздушные линии электропередач;
- произвольный.
Чаще всего встречается синусоидальный или переменный ток: им питаются все наши приборы.
Что такое напряжение в сети электричества.
Напряжение – это физическая величина, которая характеризует электрическое поле. Иными словами, оно показывает, какую работу оно совершает при перемещении одного положительного заряда на определённое расстояние.
Показатель напряжения на вольтметре
За единицу напряжения в международной системе принимается такой показатель на концах проводника, при котором заряд в 1 Кл совершает работу в 1 Дж для перемещения его по этому проводнику. Общепринятой единицей измерения напряжения считается 1 В – Вольт.
Важно! Работа измеряется в Джоулях, заряды в Кулонах, а напряжение в Вольтах, следовательно, 1 Вольт равняется 1 Джоулю, деленному на 1 Кулон. https://www.youtube.com/embed/AoQxuSGlFMQ
Что это такое
Удельным сопротивлением проводника называется физический вид величины, который показывает, что материал может препятствовать электротоку. По-другому, это такое сопротивление металлов, которое оказывает материал с единичным сечением сопротивление протекающему току. Отличается удельное сопротивление постоянному току тем, что оно вызывается током на проводник. Что касается переменного тока, то он появляется в проводнике под действием вихревого поля.
Удельное электросопротивление
Важно также уточнить, что собой представляет удельная электрическая проводимость. Электропроводимость — это величина, которая обратна сопротивлению и называется электропроводностью
Это показатель, показывающий меру проводимости силы электротока.
Обратите внимание! Чем больше он, тем лучше способен проводник проводить электричество. Общее определение из учебного пособия
Общее определение из учебного пособия
Что такое электрическое сопротивление?
Ему можно дать определение исходя из двух позиций. Первая связана с формулой для закона Ома. И звучит оно так: электрическое сопротивление — это физическая величина, которая определяется как отношение напряжения в проводнике к силе тока, протекающего в нем. Математическая запись приведена немного ниже.
Вторая основывается на свойствах тела. Электрическое сопротивление проводника — это физическая величина, которая указывает на свойство тела преобразовывать энергию электричества в тепло. Оба этих утверждения верны. Только в школьном курсе чаще всего останавливаются на запоминании первого. Обозначается изучаемая величина буквой R. Единицы, в которых измеряется электрическое сопротивление, — Ом.
Советуем изучить Блуждающие токи
Зависимость от геометрии
Но и постоянный ток не так прост, как представляется по некоторым опытам. Все дело в его силе. Известно, что площадь поперечного сечения напрямую связана с силой тока. Но эта закономерность применима не всегда. С определенных значений силы ток все больше устремляется к поверхности проводника, что называется вытеснением тока. По этой причине сопротивление току большой силы меньше у плоских и трубчатых проводников.
Распределение тока по поперечнику проводника
Еще лучший результат получается при покрытии серебром. Аналогично проявляются и токи высокой частоты. Для них поверхностный эффект закономерен так же, как и для постоянного тока большой силы. Но и механическая сила, воздействующая на проводник, способна повлиять на его сопротивление. И это неудивительно, поскольку деформации влияют на распределение частиц, которые тормозят электроны.
Этот принцип заложен в основу тензометрии, без которой сегодня невозможно представить машиностроение и другие отрасли промышленности, где важна прочность материалов. Все перечисленные причины, от которых зависит СП, по-разному проявляются у различных материалов. Но для прикладного использования взаимосвязи сопротивления с теми или иными воздействиями разработаны специальные сплавы и химические соединения.
Распределение тока по поперечнику проводника
Но в любом случае сопротивление измеряется в Омах и долях Ома, в том числе и кратных 1000, то есть килоом, мегаом. Больше нескольких единиц мегаом сопротивление, как правило, не бывает. Мы постарались показать читателям несколько причин, обуславливающих СП. Надеемся, что полученные знания помогут успешно решить существующие задачи.