Волновой метод
В процессе серийного производства электронных приборов, крепление компонентов на печатных платах осуществляется на конвейерных линиях заводов. При этом применяется пайка волной припоя.
Суть этой технологии, появившейся в 50–х годах прошлого века, заключается в следующем.
Печатные платы с установленными на них электронными компонентами движутся по специальному конвейеру. В процессе движения, места пайки покрываются флюсом, плата предварительно прогревается, после чего проходит над ванной с расплавленным припоем.
Ванна оборудована специальными соплами, создающими волну, возвышающуюся над поверхностью припоя в ванне.
Плата расположена таким образом, что места пайки контактируют с поверхностью волны при перемещении платы вдоль ванны. В этот момент происходит смачивание припоем контактных площадок на плате и выводов припаиваемых деталей.
Сила поверхностного натяжения жидкого припоя не даёт ему стечь полностью с поверхности платы, что обеспечивает спаивание деталей с контактными площадками.
Как я спаял свою первую электронную схему
В прошлом посте я делился своими скромными успехами в электронике, которые не тот момент ограничивались сборкой электронных схем на макетной плате без какой-либо пайки. Теперь же я буду хвастаться тем, как осилил делать что-то паяльником. Как, пожалуй, и в любом деле, при наличии правильной методички, коей, напомню, в моем случае является книга Чарльза Платта «Электроника для начинающих», дело это оказалось не таким уж и сложным.
Перечислю инструменты, которые я использовал. Так как в стартер к книге они не входили, их пришлось дозаказывать:
- Паяльная станция ZD-99. Температуру можно регулировать от 150 до 450 градусов. В комплекте идет держатель для паяльника и губка для очистки жала. Губку смачиваете водой, хорошо выжимаете, кладете в специально отведенную ванночку, и прямо вытираете горячий паяльник в процессе пайки.
- Держатель печатной платы с лупой (a.k.a третья рука). Просто маст хев, чтобы во время пайки ничего никуда не скользило. Польза от лупы пока что сомнительная.
- Бокорезы. Без них вы не откусите ножки припаянных элементов схемы. Кроме того, у меня неплохо получается снимать ими изоляцию с проводов.
- Пинцет. Потребность в нем возникает очень быстро. Без пинцета не обойтись, если вы хотите размещать элементы на плате достаточно плотно.
Дополнение: Дешевая паяльная станция ZD-99 вышла из строя спустя пару месяцев использования. Я заменил ее на паяльную станцию ELEMENT 878D с феном. В качестве более бюджетного варианта без фена также могу рекомендовать Simple Solder MK936 от CustomElectronics. Чтобы пайка получалась качественной, в настоящее время я всегда паяю с флюсом ЛТИ-120 (UPD: в качестве неплохой альтернативы можно порекомендовать флюс Kingbo RMA-218). Для снятия изоляции с проводов вместо бокорезов следует использовать специальный инструмент, стриппер. Для наших задач идеально подойдет стриппер на толщину провода от 20 до 30 AWG (0.25-0.80 мм).
Плюс к этому я купил припой ПОС 61 толщиной 0.8 мм с флюсом. Аналогичный припой включен в стартер, но мне показалось, что его там слишком мало. Как будет показано дальше, также вам могут понадобиться ножницы по металлу. У меня они нашлись дома. Чтобы припой не капал на стол, я поставил третью руку на обыкновенный блокнот. Вроде, это все, что касается инструментов.
Платт учит паять следующим образом. Берете два провода, спаиваете их крест-накрест. Если получилось, спаиваете два провода параллельно. Для изоляции используете термоусадочную трубку. Для нагрева термоусадочных трубок Платт советует купить промышленный фен. Однако я выяснил, что и обычный фен для волос вполне подходит. А если фена нет, трубку можно просто подержать над зажигалкой. Научившись паять провода, припаиваете провода блока питания к соединительным проводам, используемых на макетной плате. Больше не нужно соединять их «крокодилами». Удобно.
Касательно самой пайки. Просто соединяете в одной точке провода и жало паяльника. Несколько секунд греете провода (иначе к ним не прилипнет припой). Затем в ту же точку подносите припой. Вот и вся мудрость! Лично у меня все получилось с первого раза.
Важный момент об отводе тепла. Чтобы не перегреть элементы во время пайки, Платт советует одевать на ножки зажимы «крокодил». То есть, зажимы могут использоваться в качестве теплоотвода. Я пока как-то обхожусь без теплоотвода, но знать про такой прием полезно.
Итак, научившись работать с паяльником, мне захотелось спаять что-нибудь на плате, чтобы все было совсем как у взрослых. К сожалению, сделать мигающий светодиод при помощи программируемого однопереходного транзистора 2N6027, как описано у Платта, у меня не получилось. В книге приводится три немного различающиеся схемы. Я перепробовал их все. Пробовал менять немного сопротивление резисторов и емкость конденсаторов. Даже менять катод и анод местами на случай, если в моем однопереходном транзисторе они стоят не так, как у Платта — так ничего и не заработало. Допускаю, что у меня могут быть какие-то паленые однопереходные транзисторы.
В итоге я пошел гуглить, как делаются мигающие светодиоды на обыкновенных биполярных NPN транзисторах. Оказывается, соответствующая схема называется мультивибратор и выглядит приблизительно так:
Исходник этой схемы для gschem можно скачать здесь. К сожалению, gschem не умеет рисовать соединения крест-накрест, поэтому в середине схемы я просто нарисовал две прямые линии. На картинке я на всякий случай подчеркнул, что в центре схемы соединения нет. Впрочем, это и так должно быть ясно по отсутствию жирной точки.
Напряжение в 5 вольт было выбрано, потому что мне хотелось, чтобы схема питалась от USB, а по USB-кабелю идут именно 5 вольт. Больше о USB-кабеле и проводах в нем можно прочитать здесь. Обратите внимание, что красный и черный провод обычно соответствуют плюсу и минусу соответственно, но вообще это не гарантируется. Вы можете использовать и 12 вольт, этим вы ничего не спалите. В целом, чем меньше напряжение в приведенной схеме, тем реже мигают светодиоды. Емкость конденсаторов в принципе может быть любой. Я пробовал использовать конденсаторы от 22 до 100 мкФ. Чем меньше емкость, тем чаще мигают светодиоды.
Настройка технологических параметров
Для получения качественных паяных соединений, необходима настройка технологических параметров паяльной линии. Во-первых, формой и ориентацией сопла формируется гребень волны оптимального профиля, во-вторых, движущаяся над ванной плата располагается под некоторым углом к поверхности расплава.
Правильно выбранные параметры процесса позволяют избежать брака в виде перемычек между токоведущими дорожками и наплывов (сосулек) на выводах деталей.
Для этой же цели может использоваться технология пайки двойной волной. В этом случае, первая волна припоя имеет турбулентный характер, что позволяет лучше смачивать паяемую поверхность и проникать припою в монтажные отверстия платы.
Вторая волна, имеющая более плавное ламинарное течение, смывает огрехи в виде лишних капель и наплывов припоя, формируя при этом окончательную геометрию гантелей.
Пайка волной не всегда автоматизирована. Например, на многих сборочных конвейерах Китая и других стран Азии, установка деталей на плату, последующая обработка флюсом и обмакивание платы в ванну с припоем выполняют люди.
При этом плата берётся руками посредством специального захвата и обмакивается в ванну жидкого припоя.
Крепление smd компонентов
Способ пайки волной чаще применяется для плат, компоненты которых монтируются с одной стороны платы, а контактные площадки и токоведущие дорожки – с другой.
Штыревые выводы элементов вставляются при этом в сквозные отверстия платы и припаиваются с обратной её стороны. Однако большинство современных электронных схем конструируется под использование так называемых smd-компонентов, закрепляемых поверхностной пайкой. Такие детали припаиваются к плате с той же стороны, на которой они установлены.
Применение волновой технологии пайки для таких элементов имеет ряд особенностей:
- при пайке волной smd-компонентов плата должна быть ориентирована вниз предварительно приклеенными к ней деталями;
- волна расплавленного припоя омывает при этом корпуса деталей.
Таким образом, smd-компоненты перед пайкой должны быть приклеены к плате специальным клеем. При этом иногда имеют место случаи отклеивания деталей во время их контакта с волной расплава, что приводит к появлению брака.
Кроме этого, не все электронные компоненты способны выдержать температурный режим, возникающий в процессе «купания» в жидком припое. Эти обстоятельства ограничивают применение волновой технологии.
Следует добавить ещё одну отрицательную черту, присущую этой технологии пайки. Большое количество расплавленного припоя в ванне, постоянно контактирующее с открытым воздухом, приводит к активному образованию окисла.
Что может понадобиться для пайки?
Для пайки требуется источник тепла. Можно паять с использованием открытого пламени, электрической спирали, а также луча лазера. Последний позволяет паять даже чистым металлом. Дома пользуются преимущественно электрическим паяльником. Он предназначен для:
- монтажа и ремонта различных электронных схем;
- конструирования и ремонта электротехнического оборудования;
- лужения слоем припоя различных металлических изделий.
Паяльник
Паяют ручным паяльником, который используют для:
- прогрева соединяемых компонентов;
- нагрева припоя до перехода его в жидкое состояние;
- нанесения жидкого припоя на соединяемые элементы.
Паяльник, который изображен на рисунке 1, содержит:
- изолированный слюдяной пленкой или стеклотканью спиральный нагреватель из нихромовой проволоки;
- медное жало, которое расположено внутри спирали;
- пластиковую или деревянную рукоятку;
- корпус для размещения жала паяльника и спирали.
Рисунок 1. 100-ваттный паяльник с пластиковой рукояткой и трехполюсной вилкой
Применение паяльной пасты
Для крепления smd-компонентов на плате обычно применяются другие технологии пайки. Как правило, все они основаны на использовании паяльной пасты. В этот состав входит порошкообразный припой, флюс и наполнитель.
Паяльная паста наносится на контактные площадки платы и выводы установленных на них деталей.
После этого плата направляется в специальную печь, где производится нагрев соединений одним из способов:
- парогазовой смесью;
- источниками инфракрасного излучения;
- способом конвекции.
В процессе нагрева происходит плавление паяльной пасты и спайка контактов.
Почему образуются микротрещины в пайке
Микротрещины вокруг контактов, смонтированных в отверстие появляются чаще всего у контактов массивных элементов (трансформаторов, конденсаторов, дросселей) от вибраций платы даже в качественной пайке. Часто трещины появляются вокруг контактов разъемов питания, когда к ним приходится прикладывать усилия. Например, частые неисправности флешек связаны с механическим воздействием на разъем USB – со временем контакты разъемов отслаиваются или даже отрываются.
Микротрещины в припое на контактах SMD компонентов появляются от тех же вибраций и термических напряжений. Также частыми причинами являются дефекты в пайке – полости в толщине припоя, примеси, холодная пайка, наплывы, перегрев, быстрое охлаждение.
Микротрещины в шариковых контактах BGA появляются из-за дефектов пайки – холодная пайка, плохая смачиваемость поверхностей контактов, быстрое охлаждение, смещения во время охлаждения, термические напряжения.
Посмотрите, как паяют платы в Китае:
Автоматизированные технологии
В ситуациях, когда электронные компоненты имеют выводы с очень малым шагом, при пайке разъёмов, имеющих большое количество выводов, и в других случаях, требующих использования очень тонких технологий, обычно применяется паяльный робот.
Робот-манипулятор для пайки плат представляет собой прецизионное устройство, содержащее координатный стол, на который устанавливается плата с размещёнными на ней деталями и паяльной головки, перемещающейся по трём координатным осям.
Головка оборудована механизмом подачи припоя и устройством для вакуумного отсоса его излишков.
Роботизированная автоматическая пайка плат существенно уступает волновому способу по скорости, поэтому используется только в тех случаях, когда последний применить невозможно.
Кроме собственно пайки, роботы часто используются для установки деталей на плате непосредственно перед их спайкой. Отдельные элементы, установка которых в силу их сложной нестандартной формы (трансформаторы, дроссели, некоторые виды микросхем) плохо поддаются автоматизации, устанавливаются вручную.
Поэтому, даже на крупных сборочных конвейерах известных фирм, выпускающих электронное оборудование, присутствуют участки, на которых сборку осуществляют люди.
Кроме этого, контроль качества продукции также часто выполняется людьми. Платы с дефектами, которые могут быть устранены, направляются на доработку, выполняемую паяльником вручную.
Порядок восстановления
Прежде, чем припаять шлейф у дисплея, например, следует зафиксировать на изолирующей пластинке подлежащий восстановлению участок. Для этого удобнее всего воспользоваться двухсторонней клейкой лентой.
Закрепление гарантирует механическую жесткость во время пайки и в будущем обеспечит дополнительную прочность паяного соединения.
После этого нужно поместить участок с нарушенным шлейфом под экран с линзой микроскопа и посредством хорошо отточенного скальпеля очистить место контакта от слоя изоляции (примерно1-1,5 мм от разрыва). Затем при помощи кисточки нанести на очищенный контакт тонкий слой подготовленного ранее канифольного раствора.
После основательного прогрева паяльника его жалом с небольшим количеством припоя надо дотронуться до подготовленных к пайке участков. При излишках припоя их удаляют, поскольку иначе можно будет перемкнуть ими соседние дорожки. Вслед за этим берётся кусочек проводника с освобождённой от лака и хорошо залуженной жилой, которая затем прикладывается к одному из концов шлейфа.
В заключении, отмерив длину жилы по размеру контакта и откусив бокорезами её остатки, можно будет припаять второй конец к ответной части восстанавливаемого участка.