В ОИВТ РАН открыли способ сжигания алюминия в воде без химических добавок


Физические параметры алюминия и температура плавления

Температура плавления алюминия характеризует градиент перехода в жидкое состояние и определяет физические параметры химического элемента. Свойства металла позволяют применять его в различных отраслях промышленного производства, а способность образовывать устойчивые соединения значительно расширяет сферы его использования.
Способность переходить из твердого в жидкое состояние определяет физические свойства металла.

Характеристика физических и технических параметров алюминия

  • Алюминий относится к самым распространенным химическим элементам и характеризуется небольшим весом, мягкостью. Основные физические параметры металла, способность образовывать устойчивые к воздействию среды соединения, позволяют его использовать в различных отраслях промышленного производства.
  • Металл является привлекательным материалом для работы в домашних условиях. Удельная теплота плавления алюминия составляет 390 кДж/кг, и для литейных целей расплавить его в бытовых условиях не составляет труда.
  • Плавка металла может осуществляться поверхностным и внутренним нагревом. Способ внешнего теплового воздействия не требует особого оборудования и применяется в кустарных условиях.
  • Алюминий, температура плавления которого зависит от чистоты соединения, давления, для перехода в жидкое состояние требует нагрева в среднем до 660 °C или 993,5°К.
  • Существуют различные мнения относительно показателя температуры плавления металла в домашних условиях, но проверить их можно только на практике.

Свойства сплавов металла

Показатель температурного градиента колеблется для соединений металла с другими химическими элементами, определяющими их свойства. Для литейных сплавов, содержащих магний и кремний, он составляет 500 °C.

Удельная теплота плавления определяет физическое свойство химического элемента. Для сплавов этот показатель характеризует процесс перехода из одного агрегатного состояния в другое в определенном температурном интервале.

Температура начала перехода в жидкое состояние называется точкой солидус (твердый), а окончание — ликвидус (жидкий). Соответственно начало кристаллизации будет определяться точкой ликвидус, а окончание — солидус. В температурном интервале соединение находится в переходном состоянии от жидкости к твердой фазе.

В некоторых соединениях алюминия с другими химическими элементами отсутствует интервал между температурными показателями перехода из твердого состояния в расплав. Эти сплавы называются эвтектическими.

Например, соединению алюминия с 12,5% кремния, как и чистому металлу, свойственна точка плавления, а не интервал. Этот сплав относится к литейным и характеризуется постоянной температурой 577 °C.

При увеличении в сплаве количества кремния градиент ликвидус снижается от максимального показателя, свойственного чистому металлу. Среди лигатурных добавок температурный градиент снижает использование магния (450 °C). Для соединения с медью он составляет 548 °C, а с марганцем — всего 658 °C.

Алюминий образует различные сплавы с минералами.

Большинство соединений состоят из нескольких компонентов, что влияет на показатель затвердевания и плавления материала. Понятия температурных градиентов солидус и ликвидус определены для бесконечной длительности процессов равновесных переходов в жидкое и твердое состояние.

На практике учитываются поправки скорости нагревания и охлаждения составов.

Применение металла в промышленном производстве

В естественных условиях алюминий имеет свойство образовывать тонкую оксидную пленку, что предотвращает реакции с водой и азотной кислотой (без нагрева). При разрушении пленки в результате контакта со щелочами химический элемент выступает в качестве восстановителя.

С целью предотвращения образования оксидной пленки в сплав добавляют другие металлы (галлий, олово, индий). Металл практически не подвергается коррозионным процессам. Он является востребованным материалом в различных отраслях промышленности.

Алюминий и его сплавы очень востребованы в различных сферах жизни человека.

  • Алюминий считается популярным материалом для изготовления посуды, основным сырьем для авиационной и космической отрасли промышленности. Отличная электропроводность металла позволяет использовать его при напылении проводников в микроэлектронике.
  • Свойство алюминия и его сплавов при низких температурах приобретать хрупкость позволяет его использовать в криогенной технике. Отражательная способность и дешевизна, легкость вакуумного напыления делают алюминий незаменимым материалом для изготовления зеркал.
  • Нанесение металла на поверхность деталей турбин, нефтяных платформ придают устойчивость к коррозии сплавам из стали. Для производства сероводорода применяется сульфид металла, а чистый алюминий используется в качестве восстановителя редких сплавов из оксидов.
  • Химический элемент используют как компонент соединений, например, в алюминиевых бронзах, магниевых сплавах. Наряду с другими материалами его применяют для изготовления спиралей в электронагревательных приборах. Соединения металла широко применяются в стекловарении.
  • В данное время чистый алюминий редко используется в качестве материала для ювелирной бижутерии, но набирает популярности его сплав с золотом, обладающий особым блеском и игрой. В Японии металл вместо серебра используется для изготовления украшений.
  • В пищевой промышленности алюминий зарегистрирован в качестве добавки. Алюминиевые банки для пива стали популярной упаковкой для напитка с 60-х годов прошлого века. Технологическая линия предусматривает производство тары 0,33 и 0,5 л. Упаковка имеет одинаковый диаметр и отличается только высотой.
  • Основным преимуществом упаковки перед стеклом является возможность вторичного использования материала.
  • Банки для пива (газированных напитков) выдерживают давление до 6 атмосфер, имеют куполообразное, толстое дно и тонкие стенки. Особенности технологии изготовления путем вытяжки обеспечивают конструкционную прочность и надежные эксплуатационные свойства тары.

Горение металлов и сплавов

⇐ ПредыдущаяСтр 21 из 68Следующая ⇒

Общеизвестна способность к горению щелочных и щелочноземельных металлов (калия, натрия, лития, магния и др.). Однако менее известно, что в отдельных ситуациях, в т.ч. в определенных условиях пожара, способны гореть металлы и сплавы, обычно не считающиеся горючими. Из наиболее распространенных к таковым относятся различные сплавы на основе алюминия, широко применяемые в строительстве, машиностроении и других областях.

Как известно, устойчивость алюминия к окислению обусловлена наличием на его поверхности тонкой (около 0,0002 мм), очень плотной и беспористой пленки окисла. Однако алюминий, нагретый на воздухе до температуры, близкой к точке плавления (660 0С), все же начинает окисляться далее, при этом скорость окисления существенно увеличивается по мере повышения температуры выше температуры плавления. Необходимо отметить, что реакция алюминия с кислородом экзотермична и сопровождается значительно большим выделением тепла, нежели реакция окисления других ме­таллов (1675 кДж/моль) [93].

Усиливает окисление алюминия присутствие в нем примесей магния, кальция, натрия, кремния, меди. Особенно же легко окисляются при нагревании алюмомагниевые сплавы, на поверхности которых образуются рыхлые окисные пленки [94].

В таблице 1.19 приведены температуры самовоспламенения на воздухе алюмомагниевых сплавов с различным содержанием в сплаве магния.

Таблица 1.19

Температуры самовоспламенения алюмомагниевых сплавов

на воздухе (порошки 0-50 мкм, ДТА)[94]

Содерж. Mg в спла- ве, % масс.9,115,520,028,034,845,449,961,675,085,090,095,0
Т самовоспл., 0Сне горит

Интересно отметить, что температура самовоспламенения отнюдь не снижается монотонно при увеличении содержания Мg от 0 до 100 %; экстремально низкую температуру самовоспламенения имеют сплавы, содержащие примерно равные части Mg и Al.

Конечно, приведенные данные характеризуют свойства сплавов в мелкодисперсном виде. Как известно, склонность металла (сплава) к воспламенению и температура воспламенения сильно зависят от его агрегатного состояния — чем металл более дисперсен, чем больше поверхность его соприкосновения с воздухом, тем легче прогреть до критической температуры каждую частичку и тем легче идет процесс окисления, вплоть до самовоспламенения. И все же, на крупных пожарах, при больших тепловых потоках отмечались случаи, когда горели не только металлы и сплавы в измельченном состоянии, но и в буквальном смысле металлоконструкции. Такие вещи пожарные наблюдали, например, при горении складов из легких металлических конструкций (алюминиевых сплавов) со сгораемым (пенополиуретановым) утеплителем.

Особую роль здесь может играть среда. Повышенное содержание кислорода резко увеличивает возможность загорания и интенсивность горения любого материала, в том числе металла (сплава). Специалистам это хорошо известно по описаниям пожаров на подводных лодках, в медицинских камерах оксигенальной терапии, на производствах, связанных с потреблением газообразного и (что особенно опасно) жидкого кислорода.

Широко известно, что горение может возникнуть при попадании в кислородный баллон, шланг, трубопровод минерального масла вследствие самовозгорания последнего. Гораздо менее известно, что возникновение горения возможно в результате трения деталей в атмосфере кислорода: при открывании и закрывании вентилей и задвижек, срабатывании клапанов и переключающих устройств, регулировании редукторов, в момент пуска и остановки машин [95-98]. Опасно здесь не только трение металла о металл; при срабатывании отсечных клапанов или резком открытии вентилей возникает высокоскоростной поток кислорода, сопровождающийся формированием волн сжатия, ударных волн и резким возрастанием давления и температуры кислорода [99]. Конечно, указанные процессы, как правило, не обеспечивают выделения тепловой энергии, достаточной для воспламенения непосредственно металла и сплава. На практике загорание последних происходит через цепочку: “тепло­выделение — загорание неметаллических материалов, жировых веществ или отложений — загорание металла”. К неметаллическим материалам и изделиям такого рода относятся прокладки из паронита, фибры, резины, фторопласта. Загорание может возникнуть при попадании в ток кислорода сварочного грата, прокатной окалины [95, 100].

О склонности различных металлов и сплавов к горению в токе кислорода можно судить по данным табл. 1.20.

Таблица 1.20

Предельные давления кислорода, при которых

возможно горение различных металлов [95]

(толщина образца — 3 мм, температура — 20 0С,

образец расположен горизонтально)

Металл (сплав)Р, Мпа
Сталь Ст3, Ст100,02
Алюминий, сплавы АМЦ, АМг0,1
Медистый чугун1,1
Нерж.сталь (13 % Cr, 19 %Mn)1,5
Сталь 3 ´ 132,2
Нерж. сталь Х18Н10Т2,6
Медь, латунь, никель> 4,2

Из приведенных данных следует, что наиболее склонны к горению в кислороде самые распространенные марки конструкционных сталей (низкоуглеродистые, нелегированные), а также алюминий и сплавы на его основе.

Скорость горения металлов в кислороде зависит от геометрических размеров изделия и давления кислорода. С увеличением размеров и толщины изделия скорость, естественно, падает; с увеличением давления — возрастает. Представление об абсолютных величинах скоростей горения дают сведения, приведенные в таблице 1.21.

Таблица 1.21

Скорости горения металлов и сплавов в кислороде

При давлении газа 1-10 МПа

(образцы толщиной 3 мм, горизонтально расположенные) [95]

Металл (сплав)U, см/сек
Малоуглеродистая сталь0,4-1,4
Сталь Х18Н91,2-1,7
Медистый чугун0,4-1,0
Сплав АМЦ6,9-11,2
Сплав АМг67,4 -9,9

Визуальными признаками горения металла (сплава) является раз­ру­шение конструкции (предмета) в зоне горения. От выгоревшей детали часто остается ажурный “скелет”. Горение сопровождается разбрызгиванием металла, особенно интенсивным, если оно происходит в токе газа. В этом случае на месте пожара обнаруживаются множественные мелкие частички застывшего металла и окислов металла. Аналогичный разброс частиц происходит при горении электрической дуги, в которой процессы горения металла имеют место наряду с плавлением.

Горение металлов и сплавов на пожаре может вносить существенные коррективы в картину термических поражений, в формирование очаговых и “псевдоочаговых” признаков. По мере возможности это необходимо учитывать. Склонность того или иного металла (сплава) к экзотермическому взаимодействию с кислородом воздуха (горению) может быть установлена экспертом аналитическим путем, например, исследованием пробы металла методом ДТА. Подробнее об этом см. ч. III.

Инструментальные методы исследования

⇐ Предыдущая21Следующая ⇒

Рекомендуемые страницы:

Воспользуйтесь поиском по сайту:

Алюминий

Алюминий вошел в промышленное и бытовое применение относительно не так давно. На пересечении XIX – XX было освоено производство этого металла в промышленных масштабах.

Все дело в том, что началось производство множества товаров, в которых алюминий широко применялся, например, при строительстве катеров, железнодорожных вагонов и пр.

Кстати, именно тогда был показан широкой публике автомобиль с кузовом, выполненным из алюминия.

Анодированный алюминий

Состав и структура алюминия

Алюминий – это самый распространенный в земной коре металл. Его относят к легким металлам. Он обладает небольшой плотностью и массой. Кроме того, у него довольно низкая температура плавления. В то же время он обладает высокой пластичностью и показывает хорошие тепло- и электропроводные характеристики.

Кристаллическая решетка алюминияСтруктура алюминия

Предел прочности чистого алюминия составляет всего 90 МПа. Но, если в расплав добавить некоторые вещества, например, медь и ряд других, то предел прочности резко вырастает до 700 МПа. Такого же результат можно достичь, применяя термическую обработку.

Алюминий, обладающий предельно высокой чистотой – 99,99% производят для использования в лабораторных целях. Для применения в промышленности применяют технически чистый алюминий.

При получении алюминиевых сплавов применяют такие добавки, как – железо и кремний.

Они не растворяются в расплаве алюминия, а из добавка снижает пластичность основного материала, но в то же время повышает его прочность.

Внешний вид простого вещества

Структура этого металла состоит из простейших ячеек, состоящих из четырех атомов. Такую структуру называют гранецентрической.

Проведенные расчеты показывают, что плотность чистого металла составляет 2,7 кг на метр кубический.

Свойства и характеристики

Алюминий – это металл с серебристо-белой поверхности. Как уже отмечалось, его плотность составляет 2,7 кг/м3. Температура составляет 660°C.

Его электропроводность равняется 65% от меди и ее сплавов. Алюминий и бо́льшая часть сплавов из него стойко воспринимает воздействие коррозии. Это связано с тем, что на его поверхности образуется оксидная пленка, которая и защищает основной материал от воздействия атмосферного воздуха.

В необработанном состоянии его прочность равна 60 МПа, но после добавления определенных добавок она вырастает до 700 МПа. Твердость в этом состоянии достигает 250 по НВ.

Алюминий хорошо обрабатывается давлением. Для удаления наклепа и восстановления пластичности после обработки алюминиевые детали подвергают отжигу, при этом температура должна лежать в пределах 350°C.

Получение алюминиевого расплава, как и многих других материалов, происходит после того, как к исходному металлу подвели тепловую энергию. Она может быть подведена как непосредственно в него, так и снаружи.

Температура плавления алюминия напрямую зависит от уровня его чистоты:

  1. Сверхчистый алюминий плавится при температуре 660, 3°C.
  2. При количестве алюминия 99,5% температура плавления составляет 657°C.
  3. При содержании этого металла в 99% расплав можно получить при 643°C.

Алюминиевый расплавПроцесс получения алюминия

Алюминиевый сплав может включать в свой состав различные вещества, в том числе и легирующие. Их наличие приводит к снижению температуры плавления.

Например, при наличии большого количества кремния, температура может понизиться до 500°C. На самом деле понятие температуры плавления относят к чистым металлам.

Сплавы не обладают какой-то постоянной температурой плавления. Этот процесс происходит в определенном диапазоне нагрева.

В материаловедении существует понятие – температура солидус и ликвидус.

Первая температура обозначает ту точку, в которой начинается плавление алюминия, а вторая, показывает, при какой температуре, сплав будет окончательно расплавлен. В промежутке между ними сплав будет находиться в кашеобразном состоянии.

Уменьшение температуры

Перед тем как приступать к плавке металла, можно выполнить определенные операции, которые позволят снизить температуру плавления. Например, иногда расплаву подвергают алюминиевый порошок. В порошкообразном состоянии металл начинает плавиться несколько быстрее.

Но при такой обработке возникает реальная опасность того, что при взаимодействии с кислородом, который содержится в атмосфере алюминиевый порошок, начнет окисляться с большим выделением тепла и образования оксидов металла, этот процесс происходит при температуре 2300 градусов.

Главное, в этот момент плавления не допустить контакта расплава и воды. Это приведет к взрыву.

Относительно низкая температура плавления алюминия позволяет проводить эту операцию в домашних условия.

Надо сразу отметить, что в качестве сырья в домашней мастерской использовать порошкообразную смесь слишком опасно. Поэтому в качестве сырья применяют или чушки, или нарезанную проволоку.

Если к будущему изделию нет особых требований по качеству, то для плавления можно использовать все, что изготовленного из этого металла.

Плавка алюминия в самодельном горне

При этом не особо важно, будет сырье покрыто краской или нет. Когда происходит плавление алюминия, все посторонние вещества просто выгорят и будут удалены вместе со шлаком.

Для получения качественного результата плавки необходимо использовать материалы, которые называют флюсами. Они призваны решать задачу по связыванию и удалению из расплава посторонних примесей и загрязнений.

Домашний мастер, решивший в домашних условиях выполнять плавление алюминия должен отдавать себе отчет в том, что это довольно опасный процесс. И поэтому без применения средств защиты не обойтись.

В частности, должны быть использованы перчатки, фартук, очки. Дело в том, что температура расплава лежит в пределах 600 градусов.

Поэтому имеет смысл использовать средства защиты, которые применяют сварщики.

Использование средств защиты при плавке алюминия

Кстати, при плавлении алюминия и использовании очищающих химикатов необходимо защищать органы дыхания от продуктов их сгорания.

Выбор формы для литья

При выборе формы для отливки алюминия домашний мастер должен понимать, а для какой цели он обрабатывает алюминий. Если будущая отливка будет предназначена для использования в качестве припоя, то использовать, какие-то специальные формы, нет необходимости. Для этого можно использовать металлический лист, на котором можно остудить расплавленный металл.

Но если возникает необходимость получения даже простой детали, то мастер должен определиться с типом формы для литья.

Форму можно изготовить из гипса. Для этого, гипс в жидком состоянии заливают в обработанную маслом форму. После того, как начнет застывать, в него устанавливают литейную модель. Для того, чтобы в форму можно было залить расплавленный металл необходимо сформировать литник.

Для этого в форму устанавливают цилиндрическую деталь. Формы бывают разъемные и нет. Процесс изготовления разъемной формы усложняется тем, что модель будет находиться в двух полуформах. После застывания их разделяют, удаляют модель и соединяют снова. Форма готова к работе.

Кокиль для литья алюминия

Для получения качественных отливок целесообразно использовать металлические формы (кокили), но изготавливать их целесообразно только в заводских условиях.

, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Алюминий — химический элемент III группы периодической системы Менделеева (атомный номер 13, атомная масса 26,98154). В большинстве соединений алюминий трехвалентен, но при высоких температурах он способен проявлять и степень окисления +1. Из соединений этого металла самое важное — оксид Al2O3.

Алюминий — серебристый-белый металл, легкий (плотность 2,7 г/см3) , пластичный, хороший проводник электричества и тепла, температура плавления 660 °C. Он легко вытягивается в проволоку и прокатывается в тонкие листы.

Алюминий химически активен (на воздухе покрывается защитной оксидной пленкой — оксидом алюминия.) надежно предохраняет металл от дальнейшего окисления.

Но если порошок алюминия или алюминиевую фольгу сильно нагреть, то металл сгорает ослепительным пламенем, превращаясь в оксид алюминия.

  • Алюминий растворяется даже в разбавленных соляной и серной кислотах, особенно при нагревании. А вот в сильно разбавленной и концентрированной холодной азотной кислоте алюминий не растворяется. При действии на алюминий водных растворов щелочей слой оксида растворяется, причем образуются алюминаты — соли, содержащие алюминий в составе аниона: Al2O3 + 2NaOH + 3H2O = 2Na
    Модуль сдвига, кГ/мм2Коэффициент Пуассона
    Алюминиевая бронза, литье105004200
    Алюминиевая проволока тянутая7000
    Алюминий катаный69002600-27000,32-0,36

    Отражение света алюминием

    Числа, приведенные в таблице, показывают, какая доля света в %, падающего перпендикулярно к поверхности, отражается от нее.

    Наименование волнДлина волныОтражение света, %
    Ультрафиолетовые1880 2000 2510 3050357025 31 53 6470
    Видимые5000 60007000— —
    Инфакрасные8000 10000 50000100000— 74 9497

    ОКСИД АЛЮМИНИЯ Al2O3

    Оксид алюминия Al2O3, называемый также глиноземом, встречается в природе в кристаллическом виде, образуя минерал корунд. Корунд обладает очень высокой твердостью. Его прозрачные кристаллы, окрашенные в красный или синий цвет, представляют собой драгоценные камни — рубин и сапфир.

    В настоящее время рубины получают искусственно, сплавляя с глиноземом в электрической печи. Они используются не столько для украшений, сколько для технических целей, например, для изготовления деталей точных приборов, камней в часах и т.п.

    Кристаллы рубинов, содержащих малую примесь Cr2O3, применяют а качестве квантовых генераторов — лазеров, создающих направленный пучек монохроматического излучения.

    Корунд и его мелкозернистая разновидность, содержащая большое количество примесей — наждак, применяются как абразивные материалы.

    ПРОИЗВОДСТВО АЛЮМИНИЯ

    Основным сырьем для производства алюминия служат бокситы, содержащие 32-60% глинозема Al2O3 . К важнейшим алюминиевым рудам относятся также алунит и нефелин.

    Россия располагает значительными запасами алюминиевых руд. Кроме бокситов, большие месторождения которых находятся на Урале и в Башкирии, богатым источником алюминия является нефелин, добываемый на Кольском полуострове.

    Много алюминия находится и в месторождениях Сибири.

    Алюминий получают из оксида алюминия Al2O3 электролитическим методом. Используемый для этого оксид алюминия должен быть достаточно чистым, поскольку из выплавленного алюминия примеси удаляются с большим трудом. Очищенный Al2O3 получают переработкой природного боксита.

    Основное исходное вещество для производства алюминия — оксид алюминия. Он не проводит электрический ток и имеет очень высокую температуру плавления (около 2050 °C), поэтому требуется слишком много энергии.

    Необходимо снизить температуру плавления оксида алюминия хотя бы до 1000 oC. Такой способ параллельно нашли француз П. Эру и американец Ч. Холл.

    Они обнаружили, что глинозем хорошо растворяется в раплавленном криолите — минерале состава AlF3 .3NaF. Этот расплав и подвергают элктролизу при температуре всего около 950 °C на алюминиевых производствах.

    Запасы криолита в природе незначительны, поэтому был создан синтетический криолит, что существенно удешевило производство алюминия.

    Гидролизу подвергают расплавленную смесь криолита Na3 [AlF6 ] и оксида алюминия.

    Смесь, содержащая около 10 весовых процентов Al2O3 , плавится при 960 °C и обладает электропроводностью, плотностью и вязкостью, наиболее благоприятствующими проведению процесса.

    Для дополнительного улучшения этих характеристик в состав смеси вводят добавки AlF3, CaF2 и MgF2. Благодаря этому проведение электролиза оказывается возможным при 950 °C.

    Эликтролизер для выплавки алюминия представляет собой железный кожух, выложенный изнутри огнеупорным кирпичем. Его дно (под), собранное из блоков спресованного угля, служит катодом.

    Аноды (один или несколько) располагаются сверху: это — алюминиевые каркасы, заполненные угольными брикетами.

    На современных заводах электролизеры устанавливаются сериями; каждая серия состоит из 150 и большего числа электролизеров.

    При электролизе на катоде выделяется алюминий, а на аноде — кислород. Алюминий , обладающий большей плотностью , чем исходный расплав, собирается на дне эликтролизера, откуда его периодически выпускают. По мере выделения металла, в расплав добавляют новые порции оксида алюминия. Выделяющийся при электролизе кислород взаимодействует с углеродом анода, который выгорает, образуя CO и CO2.

    Первый алюминиевый завод в России был построен в 1932 году в Волхове.

Алюминий — горючий металл, атомная масса 26,98; плотность 2700 кг/м3, температура плавления 660,1 °С; температура кипения 2486 °С; теплота cгopания —31087 кДж/кг. Алюминиевая стружка и пыль могут загораться при местном действии малокалорийных источников зажигания (пламени спички, искры и др.). При взаимодействии алюминиевого порошка, стружки, фольги с влагой образуется оксид алюминия и выделяется большое количество тепла, приводящее к их самовозгоранию при скоплении в кучах. Этому процессу способствует загрязненность указанных материалов маслами. Выделение свободного водорода при взаимодействии алюминиевой пыли с влагой облегчает ее взрыв. Температура самовоспламенения образца алюминиевой пыли дисперсностью 27 мкм 520 °С; температура тления 410 °С; нижний концентрационный предел распространения пламени 40 г/м3; максимальное давление взрыва 1,3 МПа; скорость нарастания давления: средняя 24,1 МПа/с, максимальна 68,6 МПа/с. Предельная концентрация кислорода, при которой исключается воспламенение аэровзвеси электрической искрой, 3% объема. Осевшая пыль пожароопасна. Температура самовоспламенения 320 °С. Алюми­ний легко взаимодействует при комнатной температуре с водными растворами щелочей и аммиака с выделением водорода. Смешивание алюминиевого порошка с щелочным водным раствором может привести к взрыву. Энергично реагирует со многими металлоидами. Алюминиевая стружка горит, например, в броме, образуя бромид алюминия. Взаимодействие алюминия с хлором и бромом происходит при комнатной температуре, с йодом — при нагревании. При нагревании алюминий соединяется с серой. Если в пары кипящей серы всыпать порошок алюминия, то алюминий загорается. Сильно измельченный алюминий вступает в реакцию с галоидированными углеводородами; присутствующий в небольшом количестве хлорид алюминия (образую­щийся в процессе этой реакции) действует как катализатор, уско­ряя реакцию, в ряде случаев приводящую к взрыву. Такое явление наблюдается при нагревании порошка алюминия с хлористым ме­тилом, четыреххлористым углеродом, смесью хлороформа и четыреххлористого углерода до температуры около 150 °С.

Алюминий в виде компактного материала не взаимодействует с четыреххлористым углеродом. Смешивание алюминиевой пыли с некоторыми хлорированными углеводородами и спиртом приводит к самовозгоранию смеси. Смесь алюминиевого порошка с оксидом меди, оксидом серебра, оксидом свинца и особенно диоксидом свинца горит со взрывом. Смесь нитрата аммония, алюминиевого порошка с углем или нитросоединениями — взрывчатое вещество. Средства тушения: сухой песок, глинозем, магнезитовый порошок, асбестовое одеяло. Применять воду и огнетушители запрещается.

В чистом виде алюминий в природе не встречается, потому что очень быстро окисляется кислородом воздуха с образованием прочных оксидных плёнок, защищающих поверхность от дальнейшего взаимодействия.

В качестве конструкционного материала обычно используют не чистый алюминий, а разные сплавы на его основе, которые характеризуются сочетанием удовлетворительной прочности, хорошей пластичности, очень хорошей свариваемости и коррозионной стойкости. Кроме того, эти сплавы отличаются высокой вибростойкостью.

Рейтинг
( 2 оценки, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]