Газы для газовой сварки и резки металлов. Газовые смеси для сварки

Главная>>Способы сварки>>Газовая сварка>>Газы для газовой сварки
В качестве горючих газов для газовой сварки применяют ацетилен, водород, природный газ и другие. Также применяются газовые смеси для сварки, такие как нефтяной газ, пропанобутановая газовая смесь, пиролизный газ. Кроме того, для газовой сварки используют пары горючих жидкостей — бензина и керосина.

В таблице представлены наиболее распространенные газы и газовые смеси для газовой сварки и газовой резки, указаны их основные свойства и область применения:

Газ

Плотность при нормальных условиях, кг/м2 Теплота сгорания при нормальных условиях, кДж/м3 Температура пламени в смеси с кислородом, °C Коэффициент замены ацетилена Предел взрываемости (%) при смешивании с: Область применения
воздухом кислородом
Ацетилен 1,09 529200 3200 1 2,2-81,0 2,3-93,0 Все виды газосварки
Водород 0,084 10080 2400 5,2 3,3-81,5 2,6-95,0 Для сварки тонкого металла (до 2мм), сварки чугуна, алюминия, латуни
Коксовый 0,4-0,55 14700-18480 2000-2300 3,2 4,5-40,0 40,0-75,0 Для пайки, сварки легкоплавких металлов, кислородной резки
Нефтяной 0,87-1,37 36540-62160 2000-2400 3,0 3,8-24,6 10,0-73,6 То же
Метан 0,67 33600 2400-2700 1,6 4,8-16,7 5,0-59,2 То же
Пропан 1,88 87360 2600-2800 0,6 2,0-9,5 2,0-48,0 Пайка и сварка цветных металлов, газовая резка, сварка сталей толщиной до 6мм, правка, огневая зачистка
Бутан 2,54 116760 2400-2500 0,45 1,5-8,5 2,0-45,0 То же
Бензин 0,7-0,76 42840 2400 1,4 0,7-6,0 2,1-28,4 Газовая резка сталей, пайка и сварка легкоплавких металлов
Керосин 0,82-0,84 42000 2300 1,6 1,4-5,5 2,0-28,0 То же

Выбор того, или иного газа для сварки зависит не только от температуры пламени, но и от количества теплоты (теплотворной способности), которое получается при его сгорании. Коэффициент замены ацетилена, указанный в таблице, это отношение расхода газа-заменителя к расходу ацетилена при одинаковой эффективной тепловой мощности. Данный коэффициент необходим, если потребуется заменить ацетилен другим горючим газом.

Ацетилен для газовой сварки

Ацетилен — один из самых распространённых газов, применяемых для газовой сварки. Наибольшее распространение ацетилен получил из-за того, что ацетиленокислородное газовое пламя имеет наибольшую температуру, по сравнению с другими горючими газами и газовыми смесями (см. таблицу выше).

Ацетилен образуется при взаимодействии карбида кальция CaC2 с водой. Карбид кальция способен поглощать влагу из атмосферы и разлагаться под её воздействием. Поэтому, его хранят в герметичных барабанах из кровельной стали. Вместимость таких барабанов составляет 100-130кг. Получают карбид кальция при сплавлении в электропечах кокса и обожжённой извести:

CaO + 3C = CaС2 + CO

Ацетилен С2Н2 представляет собой химическое соединение углерода с водородом. Для получения ацетилена используют ацетиленовые генераторы, в которые загружают карбид и воду. Химическое взаимодействие карбида кальция и воды протекает интенсивно, с большим выделением теплоты Q:

CaC2 + 2H2O = C2H2 + Ca(OH)2 + Q

Из 1кг карбида кальция можно получить до 300л ацетилена. При нормальных условиях ацетилен бесцветен и обладает резким специфическим запахом. Ацетилен легче воздуха, его плотность составляет 1,09кг/м3.

Ацетилен взрывоопасен, если он находится в смеси с воздухом и его концентрация составляет 2,2-81% по объёму. В смеси с кислородом ацетилен взрывоопасен, при его концентрации 2,8-93% по объёму. Наиболее взрывоопасны ацетиленокислородные смеси, содержащие 7-13% ацетилена.

При растворении в жидкости взрывоопасность ацетилена существенно снижается. На практике ацетилен растворяют в ацетоне, 1л которого способен растворить до 20л ацетилена. Об этом мы говорили в статье: «Газовые баллоны для сварки. Газосварочные баллоны».

Кроме карбида кальция, источниками ацетилена являются природный газ, нефть и уголь. Полученный из природного газа, ацетилен называется пиролизным.

Ацетилен

Чистый ацетилен (С2Н2) — бесцветный, с резким запахом чеснока, оставляющий сладковатый привкус во рту при вдыхании. Он легкий (легче воздуха) и достаточно вредный для человека. Ацетилен можно получать либо на месте (соединять карбид кальция с водой), либо везти его готовый в газовых баллонах. Карбид кальция — это твердое кристаллическое вещество, образуется путем плавления извести и кокса при температуре 19002300С. При больших объемах работ выгодно, когда используются ацетиленовые генераторы, в остальных же случаях удобно забирать ацетилен из баллонов. К преимуществам этого газа можно отнести высокую температуру горения, простоту получения, удобство регулирования. К недостаткам относят его взрывоопасность и немалую стоимость.

Заменители ацетилена

К газам-заменителям С2Н2 относятся пропан и пропан-бутановая смесь, водород, коксовый газ, бензин, керосин. Они обладают достаточно высокими теплотворными способностями. Однако для качественной работы требуется больше кислорода, а t пламени при этом все равно ниже, чем у ацетилена. Поэтому пропан, бутан и другие варианты используются чаще при изготовлении металлоконструкций из цветных, легкоплавких металлов. Сталь соединить ими трудно.

Водород для газовой сварки

Водород представляет собой бесцветный газ, не имеющий запаха. При смешивании с кислородом или воздухом образует «гремучий газ», который является взрывоопасным. Поэтому, в случае применения водорода для сварки металлов, необходимо строго придерживаться правил безопасности при его хранении, транспортировании и использовании.

Водород хранят и транспортируют в стальных газосварочных баллонах при давлении, не превышающем 15МПа. Получить его можно, разлагая воду на водород и кислород при помощи электролиза. Также водород синтезируют в специальных водородных генераторах путём химической реакции серной кислоты H2SO4 и цинка, либо железной стружки. При этом образуются сульфаты цинка или железа, а освободившийся водород скапливается внутри генератора.

Выбор защитного газа для сварки

Работники авторемонтных мастерских, монтажники и другие специалисты по сварочным работам в ходе сварки нередко применяют природный газ и разнообразные газовые смеси. О том, какие бывают газы, об их особенностях и свойствах вы узнаете из нашей статьи. Мы приведем также рекомендации по выбору и использованию того или иного защитного газа при разных методах сварки и в зависимости от свариваемого материала.

Содержание

  • Для чего нужны газы (защитные) при сварке и резке
  • Какие типы газов для сварки и резки существуют: их свойства и особенности применения
  • Какой газ выбрать для определенного типа свариваемого металла

Для чего нужны защитные газы при сварке и резке

Защитный газ является немаловажным компонентом, обеспечивающим производительность и достойное качество сварочного процесса. Наименование защитного газа говорит само за себя, он нужен для защиты твердеющего расплавленного сварочного шва от окисления, а также от имеющейся в воздухе влаги и примесей, способных снизить устойчивость шва к коррозийным процессам, привести к возникновению пор и ослабить прочность шва, повлияв на геометрию сварного соединения. К тому же защитный газ охлаждает сварочный пистолет.

Какие типы газов для сварки и резки используются: их свойства и особенности применения

В качестве защитных газов, применяемых для сварки, используются инертные и активные газы, а также их смеси.

1. Инертные газы для сварки. Инертными именуются газы, которые не способны к химическим реакциям и практически не растворяются в металлах. Атомы таких газов наделены наружными электронными оболочками, заполненными электронами, чем и объясняется их химическая инертность. К ним относятся аргон, гелий и их смеси.

Аргон (Ar) — инертный газ, не вступающий в химические реакции с расплавленным металлом и иными газами в зоне горения дуги. К достоинствам этого инертного газа относится то, что он на 38% тяжелее воздуха, аргон вытесняет его из зоны сварки и надежно изолирует сварочную ванну от контакта с атмосферой. Чаще всего Ar применяется в качестве защитного газа в процессе аргонодуговой TIG сварки, MIG/MAG сварки. Примеры свариваемых металлов при помощи аргона и особенности применения приведены ниже в таблице 1.

Аргон как защитный газ востребован:

  • в строительстве и машиностроении (при сварке деталей из высоколегированной стали; оперативная резка металлов, включая и толстые листы тугоплавких металлов);
  • в горнодобывающей промышленности и металлургии (выплавка металлов; удаление газовых включений из жидкой стали).

Гелий (He) как и Ar является химически инертным, но отличается от него тем, что гораздо легче воздуха, что делает защиту сварочной ванны более сложным процессом, требующим больших затрат защитного газа. Гелий применяется как инертный защитный газ в ходе сварки нержавеющих сталей, цветных металлов и сплавов, активных и химически чистых материалов. Он обеспечивает повышенное проплавление, в связи с чем, иногда используется с целью проплавления толстых металлических листов или получения шва специальной формы. Но из-за повышенного расхода и высокой стоимости гелия в сравнении с аргоном сфера его применения достаточно ограничена.

Гелий (He) как защитный газ используется:

  • при сварке нержавеющих сталей, цветных металлов и сплавов, химически чистых и активных материалов.

1.1. Инертные газовые смеси включают обычно аргон и гелий. Имея большую плотность, чем гелий, такие смеси обеспечивают более надежную защиту металла сварочной ванны от воздуха.

Если необходимо сварить химически активные металлы часто применяют инертную смесь, содержащую 60—65 об. % He, 40-35 об. % Ar. Инертные газовые смеси заметно дороже чистого аргона, но обеспечивают более интенсивное выделение теплоты электрической дуги в месте сварки. Это является значимым при полуавтоматической сварке металлов, характеризующихся высокой теплопроводностью.

2. Активные газы для сварки. Это газы, обеспечивающие защиту сварки от доступа воздуха и при этом вступающие в химические реакции со свариваемым металлом или физически растворяющиеся в нем.

Углекислый газ (CO2) (двуокись углерода) является бесцветным не ядовитым газом, растворимым в воде, он тяжелее воздуха. Газ углекислый для сварки не должен иметь минеральных масел, глицерина, сероводорода, соляной, серной и азотной кислоты, спирта, эфиров, аммиака, органических кислот и воды. Из-за редкости сварочной углекислоты 1 сорта для сварки применяется сварочная углекислота 2 сорта и пищевая углекислота. Но, повышенное содержание водяных паров в такой углекислоте при сварке ведет к возникновению пор в швах и снижению пластических свойств сварного соединения.

В сварочном процессе может использоваться и твердая двуокись углерода, соответствующая ГОСТ 12162—66 двух марок — пищевая и техническая. При сварке низкоуглеродистых и низколегированных конструкционных сталей применяется так же газовая смесь углекислого газа с кислородом (СО2 + + О2). Используют смесь, которая включает 30 об. % кислорода. Смесь СО2 + О2 оказывает более интенсивное окисляющее действие на жидкий металл, в отличие от чистого углекислого газа.

Углекислый газ в качестве защитного применяется:

  • в строительстве и машиностроении (электросварка; процессы тонкой заточки, холодная посадка частей машин)

Кислород (O) включен в газовые смеси СО2 + О2 и Аr + О2. Это бесцветный газ, не имеющий запаха, поддерживающий горение. В случае охлаждения до температуры -183 гр. Цельсия кислород превращается в подвижную жидкость голубого цвета, а при температуре -219 гр. Цельсия замерзает. Кислород гарантирует очень широкий профиль сварного шва, характеризующийся неглубоким проплавлением, а также обеспечивает высокое тепловложение на металлической поверхности. Кислородо-аргонные смеси отличаются особым профилем проплавления сварочного шва, напоминающим «шляпку гвоздя».

Кислород как защитный газ бывает необходим:

  • в строительстве и машиностроении (кислородно-ацетиленовая газорезка и газосварка металлов, наплавка и напыление металлов, плазменный раскрой металлов)

Водород (H) не имеет цвета, запаха и является горючим газом. Водород не подходит для мартенситных или ферритных сталей из-за образования трещин, он может использоваться в концентрации от 30 до 40% с целью плазменной резки нержавеющей стали — для повышения мощности и уменьшения шлака.

  • Водород нашел применение при атомно-водородной сварке.

Азот (N) — газ без цвета и запаха, который не горит и не поддерживает горение. В соответствии с ГОСТом 9293—59, азот бывает четырех сортов: электровакуумный, газообразный газообразный 1-го сорта, газообразный 2-го сорта и жидкий. Включение азота в этих сортах должно быть соответственно не менее об.%: 99,5; 99,9; 99 и 96. Главной примесью в каждом из них является кислород.

Азот в качестве защитного газа чаще всего используется:

  • при сварке меди.

2.1. Смеси инертных и активных газов все чаще используются в процессе сварки плавящимся электродом сталей различных классов по причине их технологических преимуществ. К ним относятся:

  • высокая стабильность дуги, благоприятный характер переноса электродного металла через дугу,
  • меньшая, если сравнивать с активными газами степень химического воздействия на металлическую поверхность сварочной ванны.

Добавка к аргону незначительного количества кислорода либо иного окислительного газа существенно увеличивает устойчивость горения дуги, и улучшает качество образования сварных соединений. Кислород в атмосфере дуги обеспечивает мелкокапельный перенос электродного металла.

Выбор газа для определенного типа свариваемого металла

Какой газ используется при сварке того или иного металла, один из самых часто встречаемых вопросов новичков в сварке на тематических форумах. Примеры применения разнообразных защитных газов и газовых смесей для сварки различных металлов приведены в таблице.

Свариваемый металлЗащитный газ, используемый при сваркеОсобенности процесса сварки
Углеродистая сталь75% Ar+25% CO2Большая скорость сварочного процесса без прожогов металла толщиной до 3 мм, минимум деформации и брызгообразования
CO2Глубокое проплавление, большая скорость сварки
Нержавеющая сталь90% He+7,5% Ar+2,5% CO2Отсутствие окисления свариваемого металла и прожога, небольшая околошовная зона,
Низколегированная сталь60-70% He+25-35% Ar+4,5% CO2Высокая ударная вязкость, минимальная реакционная способность,
75% Ar+25% CO2Достаточная прочность, небольшое набрызгивание по контуру сварного соединения, высокая устойчивость дуги.
Алюминий и его сплавыArСтабильная дуга и отличная передача электродного материала в ходе сварочного процесса деталей толщ. до 25 мм
35% Ar+65 % HeБольшее тепловложение, в сравнении со сваркой чистым аргоном, улучшенная характеристика слияния, используется при сварке металла толщ. 25- 76 мм
25% Ar+75 % HeМаксимум тепловложения, незначительная пористость, используется при сварке металла более 76 мм
Магниевые сплавыArБезупречное качество шва (чистота)
Нержавеющая стальAr-1% OУлучшенная стабильность дуги, хорошее слияние контура валика сварного шва, более жидкая управляемая сварочная ванна, минимальные прожоги при сварке тяжелых нержавеющих сталей
Ar+2% OУстойчивая дуга, слияние и скорость сварки, чем при содержании 1 % кислорода, используется для сваривания тонких нержавеющих сталей
Углеродистая стальAr+1-5% OУлучшенная стабильность дуги, отличное слияние контура валика сварного шва, более жидкая управляемая сварочная ванна, минимум прожогов, скорость сварки больше в сравнении со сваркой чистым аргоном
Ar +3-10%Красивый сварной шов, сварка только с позиционированием электрода, минимальное брызгообразование
Низколегированные сталиAr+2% OНезначительный риск прожога, прочность сварного шва
ТитанArХорошая стабильность дуги
Медь, никель и их сплавыArОтличается хорошим слиянием, уменьшенной текучестью металла, используется для сварки металла толщ. до 3 мм
Ar+80-75% HeХарактеризуется повышенным тепловложением
Медь, стали duplex
NВостребован для защиты корня шва. Уменьшает образование оксидных пленок в корне шва

Грамотно определив тип защитного газа, вы обеспечите оперативность и качество сварки, а также гарантируете отличное сварное соединение и глубину проплавления, повысите надежность созданного шва и качество детали. Выбор подходящего защитного газа и его качество значительно влияют на расход сварочных материалов, труд исполнителя сварки и на исправление дефектов и итоговую обработку сварочного соединения.

Если у Вас имеются какие-либо вопросы по теме, рекомендуем найти самую актуальную информацию на нашем сайте, или напрямую обратиться к консультантам компании Тиберис.

Нефтяной газ, природный газ и пропанобутановая смесь для газовой сварки

Пиролизный газ представляет собой смесь горючих газов, образующихся при распаде нефти, мазута и других нефтепродуктов при воздействии на них высоких температур. В состав пиролизного газа входят сернистые соединения, которые вызывают коррозию мундштуков в газовых сварочных горелках. Поэтому, перед применением этот газ проходит тщательную очистку.

Нефтяной газ — является побочным продуктом нефтеперерабатывающих предприятий. Он используется, в основном, для резки и сварки металлов малой толщины и для сварки цветных металлов.

Пропанобутановые смеси являются бесцветными смесями, не имеющими запаха. Состоят они из пропана С3Н8 и бутана С4Н10. Эта смесь обладает наибольшей теплотворной способностью, т.е., при её сгорании выделяется наибольшее количество теплоты.

Какие виды газовых горелок применяются для сварки

Какие виды газовых горелок применяются для сварки

Газовая горелка – важный и достаточно сложный элемент сварочного оборудования, хотя на первый взгляд таковым не является. Она необходима для получения факела, которое воздействует на металл, и помогает регулировать объем и мощность пламени в определенных границах.

Конструкции газовых горелок делятся на:

  • инжекторные;
  • безынжекторные.

По виду используемого газа они подразделяются на:

  • ацетиленовые;
  • под жидкое горючее, а также иные газы.

По способу обработки делятся на:

  • ручные,
  • машинные.

1. Инжекторный и безынжекторный виды горелок для сварки с помощью газа.

Необходимость поддержания требуемого уровня давления подаваемого газа привела к снабжению горелки струйным насосом. Высокое давление газа не требует включения насоса, поскольку горючее подается с уже необходимым уровнем. Но если газ находится в баллонах под низким давлением, то его расход увеличивается. В таком случае давление искусственно увеличивают. Именно тогда применяется подача при помощи инжектора – принудительно. Затем в сварочной камере горелки происходит смешивание кислорода с иными газами до получения требуемой смеси, которая и создает факел.

Более простыми являются горелки, в которых нет инжектора. Газы (кислород и горючее) для факела поступают в смеситель посредством системы подачи. В нее входят: шланги, вентили и ниппели. Однородной смесь для качественного пламени становится уже в смесителе.

Она проходит по трубке наконечника и подается на мундштук, затем ее поджигают, образуя необходимое для работы пламя. Следует тщательно следить за параметрами давления подачи смеси из мундштука – таким образом можно регулировать процесс горения. Скорость, с которой смесь ацетилена и кислородом вырывается из мундштука, может равняться 70–160 м/сек. Если она будет недостаточной, то смесь, попадая внутрь горелки, взрывается в ней. Если слишком высокой – факел отрывается от горелки и тухнет.

Инжекторный и безынжекторный виды горелок для сварки с помощью газа

В горелках высокого давления может использоваться метан и водород. Они достаточно просты в работе, но применяются значительно реже инжекторных горелок низкого давления.

2. Работа горелки низкого давления.

Система подачи (ниппель и регулировочный кран) поставляет кислород высокого давления (4 атм) в горелку. Газ проходит на высокой скорости через инжектор. В камере струйного насоса кислород своей струей создает пониженное давление (ниже атмосферного), благодаря чему в нее поступает горючий газ. Он проходит через ниппель и вентиль, а потом и инжектор, смешивается с кислородом в смесительной камере. Затем с необходимой для работы скоростью подается на мундштук.

В процессе работы расход кислорода неизменен, поскольку не подвержен внешним факторам. Чего не скажешь об ацетилене, на который влияют колебание давление, нагрев мундштука, возрастание сопротивления. Что приводит к повышенному его расходу.

Газы, дополняющие сварочные смеси

Благодаря таким сварочным газам есть возможность сделать более качественный шов, снизить разбрызгивание металла.

Газы, дополняющие сварочные смеси газов

Для MIG MAG сварки кислород применяется в роли дополнительного компонента. С его помощью можно создать широкий шов, при этом проплавление металла незначительное.

Водород используется для соединения аустенитной нержавеющей стали. В процессе образуется широкий шов с глубоким проплавлением.

Азот предназначен больше для защиты сварного шва от ржавления, нежели в качестве защиты.

Выбираем защитный газ для сварки: гелий, аргон, углекислота

Очень важно правильно выбрать защитный газ. От этого напрямую зависит не только качество и геометрия сварного шва. Таким образом, проще будет исправить дефекты и произвести обработку шва в конце.

Гелий для сварки

Гелий — неядовитый вид защитного газа, он без запаха, вкуса и цвета. Применяется гелий при аргонодуговой TIG сварке цветных металлов, алюминия и т. д. Также этот вариант подходит для сварки на потолочных поверхностях. В процессе удаётся получить широкий сварной шов со смоченными краями.

Зачастую гелий используется в дополнение к аргону. Он предназначен для соединения магниевых и алюминиевых сплавов, а также активных и химически чистых металлов. Такой газ встречается в баллонах коричневого цвета и имеет белую надпись.

Гелий для сварки

Для сварки более толстых металлов подойдёт углекислый газ. В данном случае нужно быть готовым к образованию брызг в момент сварки. Работать можно лишь с использованием короткой дуги. Газ применяется для MAG сварки порошковой проволокой, полуавтоматической MAG сварки короткой дугой. Представлен в продаже в черных баллонах и надписью желтого цвета.

Сварка в газовой среде: какой должна быть смесь?

На эффективность сварочного процесса влияет состояние катализатора смеси, в роли которого выступает кислород. От степени его чистоты зависит скорость выполнения работ и качество соединительного шва.

Чтобы получить интенсивное и максимально жаркое пламя горелки, необходимо применение технически чистого кислорода.


Влияние компонентов газа на характеристики сварочного процесса.

Приток именно такого кислорода в пламя придает последнему отличные окислительные и восстановительные характеристики.

Между тем, использование чистого кислорода некоторым образом усложняет процесс. В частности, смешение чистого кислорода с некоторыми горючими газами делает их особенно взрывоопасными, так как они сгорают слишком быстро. Кроме того, работа с чистым кислородом требует, чтобы он хранился в специальных баллонах, что создает дополнительные неудобства.

Альтернативой такому способу является способ использования неочищенного (атмосферного) кислорода. Он более взрыво- и пожаробезопасен, но сварочные операции с его применением менее эффективны. Так как в окружающем воздухе кислород занимает не более 20% объема, смесь атмосферных газов не может обеспечить очень высокую температуру горения. По этой причине процедура сварки значительно замедляется.

Смеси газов

Для сварки используют 4 газообразных бесцветных вещества, вытесняющие из рабочей зоны:

  • водород, способствующий охрупчиванию металлов;
  • азот, образующий твердые шлаковые соединения;
  • кислород, активно окисляющий металлы.

Вытеснение газовоздушных компонентов происходит за счет высокой плотности защитных газов, они формируют малоподвижное облако. У всех сварочных смесей газов удельный вес больше, чем у воздуха. Концентрация компонентов подбиралась экспериментальным путем, учитывалось влияние газов на режим сварки. Смеси на основе аргона значительно расширяют возможности сварки, повышают эффективность работы сварщиков. Минимизируют риски образования дефектов в сварочных швах.

Аргон и углекислый газ

Для сваривания цветных металлов, профиля и проката из высоколегированных сталей используется сварочная смесь аргона и углекислоты. Аргон снижает активность углекислоты, а CO2 увеличивает теплопередачу аргона. Сварка углеродистых и низколегированных сталей в защитном облаке Ar+CO2 намного эффективнее, чем в каждом отдельном газе. При концентрации углекислоты в пределах 20% толстостенные металлические конструкции провариваются даже при сильной загрязненности поверхности.

Аргон и кислород

Состав применяют для сваривания низколегированных и легированных никелем сталей. При небольшой концентрации кислорода удается избежать пористости швов, аргон препятствует образованию окислов. Комбинация Ar+O2 применяется с различными видами сварочной проволоки, расширяет возможности сварочного процесса за счет повышения энергии дуги, стабильного горения. Металл быстрее проваривается. Формируются ровные шовные валики при равномерном прогреве присадочного прутка. Прочность соединения увеличивается за счет расширения диффузионного слоя.

Аргон и гелий

Инертные газы сочетают в разных пропорциях. Самые распространенные составы 7:3 и 1:1. Композиция Ar+He используется при работе с различными металлами:

  • чугуном различной плотности;
  • с низколегированными и легированными сталями с высоким содержанием никеля и хрома;
  • цветными сплавами на основе меди, алюминия;
  • тугоплавкими заготовками.

Критерии и особенности выбора газа

Выбор типа защитной среды для полуавтоматической сварки осуществляется на основе сведений о виде и марке металла заготовок, что, в свою очередь, указывает на их физико-химические особенности. В случае сваривания разнородных материалов основным считается менее стабильный и/или более тугоплавкий. Кроме того, должны учитываться:

  1. Геометрические параметры заготовок и способ их подготовки под сварку.
  2. Наличие и вид термообработки заготовок.
  3. Технологические особенности сварочного процесса, требования к качеству шва.
  4. Технические характеристики используемого оборудования и расходных материалов.
  5. Внешние условия, в том числе: температура, влажность, наличие и сила ветра, удобство доступа к стыку.
  6. Экономические показатели (стоимость и расчетный расход газа).

В таблице ниже приведены популярные виды металлов, а также газы и газовые смеси, рекомендуемые в качестве защитной среды для их сварки.

МатериалСталь низкоуглеродистаяСталь легированная, средне- или высокоуглеродистаяАлюминий и алюминийсодержащие сплавы
ArДаДаДа
HeНетНетДа
CO2ДаДа, ограниченноНет
Ar+CO2ДаДаНет
Ar+O2ДаДа, ограниченноНет
Ar+HeНетДаДа
Ar+CO2+O2ДаДа, ограниченноНет
Ar+H2Да, ограниченноДаНет
Ar+He+CO2ДаДаНет
He+Ar+CO2НетДаНет

Для MIG- и MAG-сварки подходят все указанные газы, для метода TIG рекомендуются аргон или гелий в чистом виде, а также их смесь. Иногда при работе с плавящимся электродом используют смесь аргона с водородом. Важно учитывать, что от правильного выбора защитного газа зависят:

  • качество и аккуратность шва;
  • безопасность проведения работ;
  • финансовые и трудовые затраты.

Не допускается смена защитной среды в процессе сварки, даже если она проходит послойно с полной кристаллизацией. Подача газа должна начинаться за 15-30 секунд до поджига дуги и завершаться после затвердевания ванны.

Оборудование для сварки и активный газ.

Но чтобы действительно добиться хорошего результата, нужно правильно подобрать защитный газ и оборудование для сварки.

Что касается первого, отметим, наиболее популярным является углекислый газ, а также его смеси, например, с инертными газами гелием и аргоном. А выполняется сварка в активных газах посредством сварочных полуавтоматов, которые работают на импульсивном или постоянном токе.

В одной из статей мы уже отмечали преимущества таких устройств. Напомним, что полуавтоматы позволяют получать швы высокого качества, при этом сам процесс сварки проходит практически без брызг. Кроме этих показателей, конечно же, стоит отметить и высокую производительность таких аппаратов.

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями: