Какая погрешность определяет класс точности прибора


Класс — точность — измерительный прибор

Класс точности измерительного прибора — обобщенная характеристика прибора, определяемая пределами допускаемых основной и дополнительных погрешностей, а также другими свойствами прибора, влияющими на точность, значения которых устанавливаются в стандартах на отдельные виды средств измерений. Класс точности характеризует свойства приборов в отношении точности, но не является непосредственным показателем точности измерений, выполняемых с помощью этих приборов. Например, класс точности вольтметров характеризует пределы допускаемой основной погрешности и допускаемых изменений показаний, вызываемых внешним магнитным полем и отклонениями от нормальных значений температуры, частоты переменного тока и некоторых других влияющих величин.  

Класс точности измерительного прибора — это число, которое соответствует наибольшей погрешности, допустимой нормами. Класс точности выражается в процентах от верхнего предела измерения прибора. Например, термометр класса 1 может иметь допустимую погрешность 1 % от верхнего предела шкалы.  

Класс точности измерительного прибора определяется наибольшей допустимой погрешностью в процентах величины, соответствующей предельному значению шкалы прибора.  

Класс точности измерительных приборов нормируется как обобщенная характеристика средств измерений, определяемая пределами допускаемых основной и дополнительных погрешностей, а также другими свойствами средств измерений, влияющих на их точность, значения которых устанавливаются стандартами на соответствующие виды измерительных приборов.  

Классом точности измерительного прибора называется его характеристика, которая определяет степень точности измерения, пределы основной погрешности. Для приборов теплотехнического контроля холодильных установок класс точности численно равен максимальной величине приведенной основной погрешности, выраженной в процентах.  

Что характеризует класс точности измерительных приборов.  

Приведенная допустимая погрешность определяет класс точности измерительного прибора.  

Значение какой величины определяет обозначение класса точности измерительного прибора.  

Предельные значения основной и дополнительной погрешностей определяют класс точности измерительного прибора, который задается двумя способами: по величине абсолютной погрешности и по величине наибольшей допустимой основной приведенной погрешности в виде абсолютного числа, совпадающего с пределом допустимой погрешности для конечного значения рабочей части шкалы.  

В физико-химических иследованиях первый путь равносилен увеличению класса точности измерительных приборов или переходу к более прецизионным методам измерений. Второй путь представляется более доступным, но он пригоден лишь применительно к измерению экстенсивных величин. Кроме того, для успешного использования этого приема нужно быть уверенным в том, что абсолютная погрешность измерений не коррелирует с массой исследуемого образца и, следовательно, с измеряемым экстенсивным свойством. Так, если абсолютная погрешность измерения энтальпии сгорания для калориметра данной конструкции есть величина приблизительно постоянная для заданного интервала значений 100 — 5000 Дж, с целью снижения относительной погрешности определения следует сжигать навески, обеспечивающие большое тепловыделение.  

Максимальная погрешность этих измерений известна и определяется классом точности примененных измерительных приборов.  

При различных экспериментальных работах очень важно правильно выбрать класс точности используемых измерительных приборов. Под точностью прибора понимают его свойство, характеризующее степень приближения показаний данного прибора к действительным значениям измеряемой величины

Обычно точность прибора задается классом точности прибора или указывается в его паспорте. Очевидно, что чем точнее прибор, тем меньше его погрешность и выше стоимость.  

Допустимое отношение сигнал / помеха зависит также от класса точности измерительного прибора.  

А ( / — ошибка измерения, которая определяется классом точности измерительного прибора; ДХ — допустимая погрешность измерения моделируемой величины.  

Особо специфическими являются требования, предъявляемые некоторыми стандартами в отношении класса точности измерительных приборов, применяемых при испытаниях.  

Выбор — образцовый прибор

Выбор образцового прибора производится: а) по роду тока; б) по его номинальной величине; в) по классу точности.  

При выборе образцовых приборов для поверки необходимо учитывать ряд общих требовании, выполнение которых имеет существенное значение для обеспечения правильности результатов. Образцовый прибор должен быть более точным, чем поверяемый. Как общее правило, класс точности образцового прибора должен бытЬ по меньшей мере в 3 раза выше класса точности поверяемого прибора.  

При выборе образцового прибора необходимо учесть, что верхний предел измерения образцового прибора должен быть равен или быть больше верхнего предела измерений поверяемого прибора. Кроме того, основная погрешность образцового прибора должна быть в 4 раза меньше основной погрешности поверяемого прибора.  

При выборе образцового прибора необходимо, чтобы верхний предел измерения образцового прибора был более или равен верхнему пределу измерений поверяемого прибора.  

При выборе образцовых приборов должны быть соблюдены определенные условия, при которых собственная погрешность образцовых приборов не будет оказывать заметного влияния на оценку погрешностей поверяемых приборов.  

При выборе образцового прибора по его номинальной величине необходимо, чтобы его верхний предел измерения был равен или близок верхнему пределу измерения поверяемого прибора; в противном случае относительные ( но не приведенные) погрешности образцового прибора могут быть недопустимо велики.  

При выборе образцового прибора по классу точности необходимо, чтобы допустимая ( приведенная) погрешность его была по крайней мере в 3 раза меньше допустимой ( приведенной) погрешности поверяемого прибора.  

При выборе образцового прибора для поверки конкретного типа средства измерений необходимо не только учитывать его точностные характеристики, но и анализировать согласованность принятой модели измеряемой величины с действительным законом ее изменения

При определении достоверности поверки необходимо принимать во внимание влияние составляющей погрешности поверки из-за неадекватности принятой и реальной модели поверяемого параметра.  . При выборе образцовых приборов их шкалы не должны превышать конечного значения шкалы проверяемого прибора.  

При выборе образцовых приборов их шкалы не должны превышать конечного значения шкалы проверяемого прибора.  

При выборе образцового прибора для поверочных работ необходимо, чтобы его верхний предел измерений был равен или несколько больше верхнего предела измерения поверяемого прибора. Класс точности образцового прибора рекомендуется не менее чем, в 3 раза выше класса точности поверяемого прибора.  

При работе с электроизмерительными приборами подготовка к поверке в большинстве случаев заключается в выборе подходящих образцовых приборов и включения их совместно с поверяемым прибором в схему соответствующей поверочной установки. В некоторых случаях приходится делать и другие подготовительные операции, так, например, перед определением характеристик гальванометра со световым отсчетом нужно соответственно установить его и наладить осветительные устройства. В порядке подготовки к поверке выясняется также уравновешенность подвижной части показывающих приборов и испытывается электрическая прочность изоляции токоведущих частей или измеряется сопротивление ее.  

Поверка прибора состоит из четырех частей: 1) внешнего осмотра прибора; 2) выбора образцового прибора и подготовки к поверке; 3) поверки показаний прибора и 4) документального оформления поверки.  

Установка для поверки пружинных манометров по образцовому грузопоршневому манометру.  

При поверке любого прибора сравнивают показания поверяемого прибора с показаниями образцового. При выборе образцового прибора для поверки учитывают следующие требования: 1) верхний предел образцового прибора должен превышать верхний предел поверяемого прибора; 2) максимальная абсолютная погрешность образцового прибора должна быть, по крайней мере, в четыре раза меньше максимальной абсолютной погрешности поверяемого прибора.  

Следует обратить внимание на распространенную ошибку, когда вместо пятикратного запаса по точности применяют образцовые приборы, у которых число, обозначающее класс точности, в пять раз меньше класса точности поверяемого прибора. Ошибка эта является следствием отождествления понятий класс точности и приведенная погрешность

Поскольку предел допускаемой погрешности прибора зависит не только от его класса точности, но и от предела измерения, следует учитывать последний при выборе образцового прибора.  

Электростатические КИП

Эти приборы работают на принципе взаимодействия заряженных электродов, которые разделены диэлектриком. Конструктивно они выглядят практически как плоский конденсатор. При этом, при перемещении подвижной части емкость системы также изменяется.

Наиболее известные из них – это устройства с линейным и поверхностным механизмом. У них немного разный принцип действия. У приборов с поверхностным механизмом емкость изменяется за счет колебаний активной площади электродов

В другом случае важно расстояние между ними

К достоинствам таких устройств относятся небольшая мощность потребления, класс точности ГОСТ, достаточно широкий частотный диапазон и т.д.

Недостатками являются небольшая чувствительность прибора, необходимость экранирования и пробой между электродами.

Регистрация электрических величин в аварийных режимах

Гост р 8.674-2009 государственная система обеспечения единства измерений (гси). общие требования к средствам измерений и техническим системам и устройствам с измерительными функциями
1.6.20. Для автоматической регистрации аварийных процессов в электрической части энергосистемы должны предусматриваться автоматические осциллографы.

Расстановку автоматических осциллографов на объектах, а также выбор регистрируемых ими электрических параметров, как правило, следует производить в соответствии с рекомендациями, приведенными в табл. 1.6.2 и 1.6.3.

По согласованию с энергосистемами (районными энергетическими управлениями) могут предусматриваться регистрирующие приборы с ускоренной записью при аварии (для регистрации электрических параметров, не контролируемых с помощью автоматических осциллографов).

Для чего используются

Разнообразные виды измерительных трансформаторов встречаются как в небольших приборах размером со спичечный коробок, так и в крупных энергетических установках. Их основное назначение – понижать первичные токи и напряжения до значений, необходимых для измерительных устройств, защитных реле и автоматики. Применение понижающих катушек обеспечивает защиту цепи низшего и высшего ранга, поскольку они разделены между собой.

Понижающие средства разделяют по признакам эксплуатации и предназначены для:

  • измерений. Они передают вторичный ток на приборы;
  • защиты токовых цепей;
  • применения в лабораториях. Такие понижающие средства имеют высокую классность точности;
  • повторного конвертирования, они относятся к промежуточным инструментам.

Измерение

Измерительный трансформатор необходим для понижения высокого тока основного напряжения и передачу его на измерительные устройства. Для подключения стандартных приборов к высоковольтной сети потребовались бы громоздкие установки. Реализовывать инструменты таких размеров экономически не выгодно и не целесообразно.

Использование понижающих трансформаторов позволяет применять обычные устройства измерения в обычном режиме, что расширяет спектр их применения. Благодаря снижению напряжения, они не требуют дополнительных модификаций. Трансформатор отделяет высоковольтное напряжение сети от питающего напряжения приборов, обеспечивая безопасность из использования. От их классности зависит точность учета электрической энергии.

Защита

Кроме питания измерительных приборов понижающие трансформаторы подают напряжение на системы защиты и автоматической блокировки. Поскольку в сетевой электросети происходят перепады и скачки напряжения, которое губительно для высокоточного оборудования цепи.

В энергетических установках оборудование делится на силовое и вторичное, которое контролирует процессы первичной схемы подключения устройств. Высоковольтная аппаратура располагается на открытых площадках или устройствах. Вторичное оборудование находится на релейных планках внутри распределительных шкафов.

Промежуточным элементом передачи информации между силовыми агрегатами и средствами измерения, управления, контроля и защиты являются понижающие или измерительные трансформаторы. Они разделяют первичную и вторичную цепь от пагубного воздействия силовых агрегатов на чувствительные измерительные приборы, а также защищают обслуживающий персонал от повреждений.

Технические характеристики

Согласно документации, на схемах сети вольтметры принято обозначение окружностью с вписанной латинской буквой «V». На русских смехах он может заменяться на русскую букву «В». Более того, первая цифра после буквы в маркировке отображает тип устройства и специфику его использования. Например, В2 — вольтметр для постоянного тока, В3 — для переменного, В4 — для импульсного и т.д.

Вам это будет интересно Разновидности бытовых и промышленных электрических выключателей


Аппарат В3-38 для использования в сетях переменного тока

Оценка характеристик прибора включает в себя следующие компоненты:

  • Диапазон измерений. Он ограничивается наименьшим и наибольшим показателем, который способен изменить аппарат. Современные устройства обладают диапазоном от милливольт до киловольт. Промышленные аналоги же способны измерять как меньшие, так и большие напряжения;
  • Точность измерений. Далеко не каждый домашний тестер отличается повышенной точностью измерений. Как уже было сказано, это зависит от его внутреннего сопротивления. Новые вольтметры при сравнительно небольших размерах обладают маленькими погрешностями измерений;
  • Диапазон частот. Показывает чувствительность прибора к тем или иным сигналам с разными частотами, регистрируемых в сети;
  • Температура и другие факторы. Эти параметры определяют показатели, при которых аппарат обладает минимальной погрешностью измерений, доступной для него;
  • Собственно само внутреннее сопротивление (импеданс). Чем выше этот параметр, тем вольтметр более точен.


Цифровые устройства практически полностью вытеснили аналоговые

Важно! Технические характеристики аналоговых приборов сильно зависят от чувствительности магнитоэлектрического прибора. Чем меньше его ток полного отклонения, тем более высокосопротивительные резисторы можно использовать

Возможности и характеристики

Утверждение типа средств измерений

Между собой мультиметры отличаются не только принципом действия, но и возможностью измерять те или иные величины. Любое многофункциональное устройство имеет базовые и дополнительные функции.

К базовым режимам работы относят:

  • амперметр;
  • вольтметр;
  • омметр.

При этом можно измерять как переменные значения сигналов, так и постоянные. Дополнительные режимы дают возможность проверить прибором ёмкость, индуктивность, частоту, температуру и p-n переход. Некоторые измерители представляют собой мобильные осциллографы, благодаря чему можно наблюдать и форму сигнала. Но не всегда дешёвый прибор имеет мало функций. Часто устройства, имеющие базовые функции, стоят дороже, чем иной функциональный тестер. Это объясняется качеством измерения и видом защиты, которая используется в приборе.

Во время подбора тестера следует обратить внимание на следующие функции:

  • напряжение переменного и постоянного тока;
  • силу переменного и постоянного тока;
  • измерение электрического сопротивления;
  • проверка фотоэлементов;
  • прозвонка, которая происходит в режиме проверки низкоомного сопротивления, сопровождаясь звуковым сигналом;
  • тестирование транзисторов, измерение коэффициента усиления по току;
  • проверка ёмкости радиоэлементов;
  • замер индуктивности;
  • определение температуры — как правило, с помощью выносимой термопары.

Качественный мультиметр должен оборудоваться защитой режимов измерений. В случае ошибочно выбранного уровня она должна предохранять прибор от возможного повреждения. Кроме этого, востребованными функциями являются автовыключение питания, память измеренных результатов, автоматический выбор предела тестирования и подсветка

Стоит обратить внимание и на форму тестера и на то, из какого материала выполнен корпус прибора

Пределы

Как уже говорилось раньше, измерительный прибор, благодаря нормированию уже содержит случайную и систематические ошибки. Но стоит помнить, что они зависят от метода измерения, условий и других факторов. Чтобы значение величины, подлежащей замеру, было на 99% точным, средство измерения должно иметь минимальную неточность. Относительная должна быть примерно на треть или четверть меньше погрешности измерений.

Базовый способ определения погрешности

При установке класса точности в первую очередь нормированию подлежат пределы допустимой основной погрешности, а пределы допускаемой дополнительной погрешности имеют кратное значение от основной. Их пределы выражают в форме абсолютной, относительной и приведенной.

Приведенная погрешность средства измерения – это относительная, выраженная отношением предельно-допустимой абсолютной погрешности к нормирующему показателю. Абсолютная может быть выражена в виде числа или двучлена.

Если класс точности СИ будет определяться через абсолютную, то его обозначают римскими цифрами или буквами латиницы. Чем ближе буква будет к началу алфавита, тем меньше допускаемая абсолютная погрешность такого аппарата.

Класс точности 2,5

Благодаря относительной погрешности можно назначить класс точности двумя способами. В первом случае на шкале будет изображена арабская цифра в кружке, во втором случае дробью, числитель и знаменатель которой сообщают диапазон неточностей.

Основная погрешность может быть только в идеальных лабораторных условиях. В жизни приходится умножать данные на ряд специальных коэффициентов.

Дополнительная случается в результате изменений величин, которые каким-либо образом влияют на измерения (например температура или влажность). Выход за установленные пределы можно выявить, если сложить все дополнительные погрешности.

Случайные ошибки имеют непредсказуемые значения в результате того, что факторы, оказывающие на них влияние постоянно меняются во времени. Для их учета пользуются теорией вероятности из высшей математики и ведут записи происходивших раньше случаев.

Пример расчета погрешности

Статистическая измерительного средства учитывается при измерении какой-либо константы или же редко подверженной изменениям величины.

Динамическая учитывается при замерах величин, которые часто меняют свои значения за небольшой отрезок времени.

Нормирование

Классы точности средств измерений сообщают нам информацию о точности таких средств, но одновременно с этим он не показывает точность измерения, выполненного с помощью этого измерительного устройства. Для того, чтобы выявить заблаговременно ошибку показаний прибора, которую он укажет при измерении люди нормируют погрешности. Для этого пользуются уже известными нормированными значениями.й

Нормирование осуществляется по:

Формулы расчета абсолютной погрешности по ГОСТ 8.401

Каждый прибор из конкретной группы приспособлений для замера размеров имеет определенное значение неточностей. Оно может незначительно отличаться от установленного нормированного показателя, но не превышать общие показатели. Каждый такой агрегат имеет паспорт, в который записываются минимальные и максимальные величины ошибок, а также коэффициенты, оказывающие влияние в определенных ситуациях.

Читать также: Фрезер фиолент мфз 1100

Все способы нормирования СИ и обозначения их классов точности устанавливаются в соответствующих ГОСТах.

Классификация счетчика по фазности

В зависимости от того, какой тип электросети проведен в доме (с однофазным напряжением или трехфазным), необходимо приобретать соответствующий счетчик:

  1. Однофазный прибор учета — устанавливается в однофазную (двухпроводную) сеть с напряжением 220 В. Такие электросети в основном проведены в квартирах, индивидуальных жилых домах, небольших магазинах, офисах.
  2. Трехфазный прибор учета — устанавливается в трехфазную сеть с напряжением от 380 В. Такие электросети проводятся в больших коттеджах, на промышленных объектах, в крупных магазинах, ресторанах, административных зданиях и складах, одним словом — на крупных объектах.

Вопрос выбора

Для установки электросчётчика в частном доме или квартире подойдут модели, которые имеют класс не менее 2.

Кроме этого, отправляясь за электрическим счётчиком в магазин, следует точно знать следующие характеристики:

  1. Фазность электрической сети. Если электрическая сеть, которая подведена к счётчику, является однофазной, то устройство должно быть также для однофазной сети. Трёхфазный электросчётчик также можно установить для подсчёта использования электроэнергии, но такие устройства, как правило, имеют более высокую стоимость. Когда счётчик устанавливается для измерения трёхфазного тока, то на нём обязательно указывается соответствующая надпись. Для подсчёта трёхфазного тока однофазные приборы не используются.
  2. Нагрузка, при которой будет эксплуатироваться данное устройство. В зависимости от максимальной нагрузки, которая будет подключена к устройству подсчёта электроэнергии, выбирается модель, на корпусе которой обозначается такой показатель. Для стандартной нагрузки, которая используется в частном доме, применяются модели электросчётчиков рассчитанных на максимальный ток – 60 А. Если планируется подключать мощные отопительные электрические котлы, то электросчётчик выбирается с показателем не менее – 100 А.
  3. Если поставщик электроэнергии может продавать электроэнергию по 2 тарифам, то тарифность счётчика также учитывается при покупке. Значительно экономить на оплате электричества позволяет двухтарифные устройства. При использовании электроэнергии в ночное время такой счётчик будет регистрировать расход отдельно. Если поставщик электроэнергии позволяет производить такую оплату, то установка многотарифного счётчика позволит использовать электричество более рационально.
  4. Способ крепления. Позволяет установить прибор в уже имеющийся короб, или на место прибора который был установлен ранее.

Искусство выбора

Как правильно выбрать электросчетчик в квартиру? Какой лучше из представленных на рынке видов? Оценку следует производить по техническим характеристикам.

Бытовые приборы учета изготавливают однофазные и трёхфазные. Однофазные рассчитаны на напряжение 0,22 киловольта. Сети под такой счётчик состоят из одной фазы и ноля. Применяются для квартир, частных домов, садовых строений и гаражей.

Трёхфазные устройства работают на напряжении 0,4 киловольта. Устанавливаются на сетях из фаз «А», «В», «С» и «ноль». Применяют для строений с нагрузкой выше среднего значения: домов, коттеджей и гаражей, напичканных энергоёмкой техникой – нагревателями, холодильниками, насосами, электропечами, кондиционерами.

Трёхфазные счётчики умеют работать на напряжении 0,22 киловольта. Однофазные не справляются с нагрузкой сети 0,4 киловольт.

Классы точности электросчетчиков для квартиры законодательно установлены в значении 2,0.

Поставщики электросчетчиков предлагают двухтарифный режим электропотребления. Ночные тарифы снижают финансовую нагрузку на потребителя. Если в бытовом здании в ночное время с 23:00 до 07:00 используются приборы со средним потреблением электроэнергии 30% суточного объёма, то оправдан переход на оплату по двухтарифному режиму.

Приведем пример. В Челябинской области в первом полугодии 2017 года при режиме «один тариф» (Тс) электроэнергия обходится частному потребителю в 2,92 руб/кВт*ч. Режим «два тарифа» рассчитывается с учётом дневной цены Тд 3,36 руб/кВт*ч. и ночной цены Тн 1,75 руб/кВт*ч.

Суточное потребление (Эс) складывается из дневного (Эд) и ночного количества (Эн). В сумме получается потребление 100 процентов.

Эс = Эд+ Эн = 100%

Стоимость суточной электроэнергии при однотарифном режиме равна Эс * 100.

При двухтарифном режиме затраты составят

Эд*Тд + Эн*Тн = Тс*100

Подставим замену Эд=100-Эн.

(100-Эн)*Тд + Эн*Тн = 100*Тс

Осталось упростить выражение и получить формулу для расчёта ночного процента потребления электроэнергии.

Эн=100*(Тд-Тс)/(Тд-Тн)%

Подставив в формулу значения тарифов гарантирующего поставщика, получим 27% — процент ночного потребления электроэнергии, оправдывающий затраты на установку двухтарифного счётчика в квартирах и домах Челябинской области.

Зная цену электроэнергии по каждому режиму для собственного региона, потребитель способен рассчитать процент ночной нагрузки и определить рациональность установки двухтарифного счётчика.

Окупаемость прибора учета электроэнергии также зависит от тарифной политики в регионе. Пусть:

Цот – цена счётчика для одного тарифа;

Цдт – цена счётчика для двух тарифов;

Сок – Срок окупаемости;

Эм, Эдм, Этм – месячные суточные, дневные и ночные объёмы электроэнергии.

Сок=(Цдт-Цот)/(Эм*Тс- Эдм*Тд – Этм*Тн).

При месячном дневном потреблении 170 кВт*ч и ночном 70 кВт*ч срок окупаемости составит:

Сок = (1500 — 700)/(240*2,92 – 170*3,36 – 70*1,75) = 77 месяцев.

Семьдесят семь месяцев – это половина интервала между государственными поверками. Скорость окупаемости не впечатляет. При увеличении электрической нагрузки в доме срок снизится.

Так, при ежемесячном потреблении электричества в количестве 300 кВт*ч., в том числе 150кВт*ч. днём и 150 кВт*ч. ночью, срок окупаемости снизится в десять раз, до 7 месяцев.

Бытовой вывод: энергоёмкие устройства (стиральную машинку, бойлер) предпочтительнее включать в период с 11 вечера до 7 часов утра.

Какие бывают классы точности

Погрешность электросчетчика определяется его конструктивной особенностью и регламентируется заводом-изготовителем. На заводе производится тарировка, после чего показания заносятся в паспорт изделия. Законодательно установлены сроки эксплуатации и поверки счетчиков в зависимости от конструктивной особенности.

В таблице снизу приведены среднестатистические данные о сроках эксплуатации.

По истечении этого срока эксплуатация запрещена, следует заменить прибор или отправить его на поверку. Сейчас за сроками должны следить собственники. Если не соблюдать указанный норматив, то на владельца могут наложить штраф.

Ответственность за пользование просроченным электросчетчиком лежит на владельце. Для проведения поверки устройство демонтируется и передается в специализированную лабораторию, где производят комплексную экспертизу и проверяют погрешность измерения.

Если прибор учета отвечает заводским показателям, то работники лаборатории дают заключение о пригодности устройство к дальнейшей эксплуатации, о чем делается запись в паспорте изделия. Неисправный электросчетчик ремонтируют или списывают.

Итак, по ПУЭ максимально допустимая погрешность индукционных приборов учета электроэнергии равна 2. Однако, по закону на 2020 год с 1 июля должны будут устанавливаться «умные счетчики» за счет государства. Исходя из этого следует, что владельцу не нужно будет заниматься приобретением электросчетчика, и знать какая у него погрешность 1 или 2, что лучше. Этим будут заниматься организации, производящие замену устройств учета.

Учет электроэнергии обязателен для всех потребителей. Так, для юридических лиц, физических лиц с трёхфазным вводом и прочих крупных потребителей электросчетчики трехфазного тока. Если у него имеются такие электроустановки.

В зависимости от мощности потребления используют электросчетчики с классом точности:

  1. Для хозяйствующих субъектов с присоединением к сети 35 кВ и мощностью до 670 кВт устанавливаются счетчик электроэнергии с погрешностью не менее 1,0.
  2. Для подсоединения нагрузки с напряжением 110 кВ и более, класс точности счетчика электроэнергии должен быть 0,5S.
  3. Учет потребляемой электроэнергии при нагрузке выше 670 кВт, применяются устройства с точностью 0,5S и позволяющие фиксировать почасовые нагрузки, а также иметь возможность интегрироваться в систему учета и памяти, способную хранить данные до 90 суток.

Все электросчетчики, применяемые для коммерческого учета на высоковольтных линиях, не могут быть прямого включения. Для измерения потребляемой электроэнергии в этом случае, а также при потреблении токов свыше 100А применяются счетчики трансформаторного включения.

При напряжении подключения 110 кВ и более, а также при мощности свыше 670 кВт применяются приборы учета с классом точности 0,5 и 0,5S. Потребителю необходимо знать, какой класс точности должен быть у счетчика и 0,5 и 0,5S в чем разница между этими показателями.

Основные отличия заключаются в следующем:

  • Погрешность 0,5 не позволяет учитывать всю электроэнергию, что приводит к большему объему недоучтенной электроэнергии, по сравнению с 0,5S.
  • Разница в показаниях составляет 0,75%.
  • Счетчики с погрешностью 0,5 не проходят поверку и бракуются.
  • При выходе устройства из строя или окончании срока эксплуатации обязательна замена таких счетчиков на приборы с погрешностью 0,5S.

ВАЖНО! Показания на приборе зависят от класса точности электросчетчика и трансформатора тока

Виды электросчётчиков

Индукционные

Индукционные – представляют собой знакомое практически каждому устройство. Их характерной особенностью является постоянно вращающееся колёсико за прозрачным стеклом. Оно крутиться с разной скоростью и зависит это от расхода электричества. Чем он выше, тем быстрее раскручивается колёсико.

Показания можно увидеть на специальных барабанах с изображёнными цифрами. Принцип работы у него следующий. В конструкции есть 2 катушки. Одна из них катушка напряжения. Она ограничивает переменный ток, а также служит неким барьером для различного рода помех.

Ещё её функция заключается в создании магнитного потока, который эквивалентен проходящему через неё напряжению. Вторая катушка называется токовой. Она также производит магнитный поток, но только он соразмерен силе тока.

Оба магнитных потока в итоге проникают через специальный алюминиевый диск. Поскольку они имеют параболическую траекторию, то проходят сквозь вышеупомянутую преграду 2 раза. За счёт этого и возникают силы, которые заставляют алюминиевый диск крутиться.

Вследствие этого ось, на которой он расположен, оказывает действие на те самые барабаны с цифрами посредством зубчато-винтовой передачи. Таким образом, показания зависят от скорости вращения диска из алюминия, а она, в свою очередь, зависит от магнитных потоков, которые создаются катушками.

В итоге, чем выше напряжения в электросети, тем больше будут цифры на барабанах. Такие счётчики достаточно широко распространены даже в век высоких технологий.

К их достоинствам можно отнести:

  1. Высокую надёжность.
  2. Долговечность.
  3. Абсолютную независимость от случайных перепадов напряжения.
  4. Невысокую цену.

Однако есть у них несколько недостатков:

  1. Низкий класс точности.
  2. Фактическое отсутствие какой-либо защиты от хищения электроэнергии.
  3. Большой расход электричества самим счётчиком.
  4. Неизбежный рост погрешности при малых нагрузках.
  5. Большие габаритные размеры.

Электронные

Электронные – в наши времена более выгодны и используются несколько чаще. Они превосходят индукционные по классу точности и дают возможность учитывать такой показатель, как многотарифность.

Такой тип счётчика работает на основе преобразования аналогового сигнала, который поступает с датчика электрического тока. Прибор превращает его в цифровой код, который по числовому показателю равен потребляемой энергии. Затем полученный код расшифровывается в микроконтроллере и после этого на цифровом экране можно увидеть показания.

Счётчик электрического типа обладает гораздо большим числом достоинств, чем индукционный собрат, к ним относят:

  1. Высокий класс точности.
  2. Многотарифность.
  3. Измерение расхода всех типов электричества.
  4. Хранение всех показаний.
  5. Легкодоступность информации.
  6. При попытке хищения происходит фиксация несанкционированного доступа.
  7. Возможность снимать показания с прибора дистанционно.
  8. Небольшие габаритные размеры.

К малому числу недостатков относятся:

  1. Высокая чувствительность устройства к перепадам напряжения.
  2. Относительно высокая стоимость
  3. Сложность при обслуживании и ремонте.

Похожие записи

  • Как пользоваться мультиметром правильно
  • Расчет сопротивления резистора для светодиодов: онлайн-калькулятор
  • Как проверить заземление
  • Правильный выбор трансформатора тока по госту
  • Трансформаторы тока и напряжения
  • Как проверить основные параметры аккумулятора мультиметром
  • Защита от перенапряжения: обзор доступных вариантов и эффективных устройств (90 фото)
  • Поверка электросчетчика: срок поверки и межповерочный интервал
  • Источники бесперебойного питания для отопительных котлов любого типа
  • Как измерить сопротивление петли фаза-ноль?
  • Реле напряжения в трехфазной сети
  • Технические характеристики и схема подключения электросчетчиков нева
  • Проверить электросчётчик: простые методы проверки приборов учета электроэнергии (115 фото)
  • Все нюансы измерения напряжения мультиметром
  • Качество электрической энергии на предприятии
  • Как выбрать сетевой фильтр с предохранителем от скачков напряжения
  • Расчет сопротивления параллельного соединения резисторов
  • Стабилизатор напряжения
  • Узел учета канализации: особенности, приборы измерения
  • Принцип действия волосного гигрометра
  • Регулируемый стабилизатор напряжения
  • Технические характеристики счетчиков се 101
  • Способы прозвонки деталей платы мультиметром
  • Как измерить силу тока мультиметром?
  • Расчет резистора для светодиода: как подобрать токоограничивающий элемент

С этим читают

  • Как пользоваться мультиметром правильно
  • Расчет сопротивления резистора для светодиодов: онлайн-калькулятор
  • Как проверить заземление
  • Правильный выбор трансформатора тока по госту
  • Трансформаторы тока и напряжения
  • Как проверить основные параметры аккумулятора мультиметром
  • Защита от перенапряжения: обзор доступных вариантов и эффективных устройств (90 фото)
  • Поверка электросчетчика: срок поверки и межповерочный интервал
  • Источники бесперебойного питания для отопительных котлов любого типа
  • Как измерить сопротивление петли фаза-ноль?
Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]