Принцип работы электромагнита постоянного тока


Электромагнит: устройство и принцип работы .

Уже, наверное, каждый столкнулся с магнитами и знает, что это. На сегодняшний день существует несколько типов магнитов: постоянные, временные и электромагниты. Сегодня мы немного углубимся в последний тип.

К электромагниту относится такое устройство, которое создаёт магнитное поле с помощью проходящего через него электрического тока. Само устройство выглядит вполне просто и незамысловато: обмотка и ферромагнитный сердечник, который является «обладателем» магнитных свойств. Итак, по проводам поступает электричество и доходит до сердечника, начиная вокруг него крутиться. В этот момент сердечник становится магнитом. Но стоит отключить поток электричества, как сердечник моментально теряет все свойства. Всё очень просто! Более того, электромагнит очень просто сделать самостоятельно.

Применение

Электромагнит является очень популярным изобретением, которое используют во многих сферах. Электромагнит – это неотъемлемая часть большого количества различных механизмов. Это связано с его функциональностью и способностью в нужный момент «отключаться».

В качестве яркого примера, известного многим, можно назвать электромагнитный подъёмный кран, способный поднимать невероятные по весу металлические детали. Почему именно такое устройство – догадаться несложно:

  • Сила сцепления невероятных масштабов
  • Возможность «включать» и «отключать» магнит в нужное время через подачу тока.

Такие способности удобны не только при подъёме тяжелых металлических предметов и грузов, но и при очистке и фасовке, где нужно отобрать металл от других материалов. В данном случае используются магнитные сепараторы, принцип работы которых идентичен.

В завершении

Электромагнит – это важное устройство, которое стало незаменимым во многих приборах благодаря особенностям работы. Сегодня электромагниты находятся в большинстве бытовых приборов и устройств, а учёные и конструкторы продолжают разработки по их усовершенствованию и получению новых уникальных продуктов с применением электромагнита.

Как и обычный магнит , электромагниты окружают нас везде, уже поистине достойно став неотъемлемой частью жизни человека.

Источник



Электромагнит — устройство и принцип работы

Электромагнит — устройство, создающее магнитное поле при прохождении электрического тока через него.

Обычно электромагнит состоит из обмотки и ферромагнитного сердечника, который приобретает свойства магнита при прохождении по обмотке электрического тока.

Магнитные поля возникают в случае, когда весь набор электронов металлического объекта начинает вращаться в одинаковом направлении.

В искусственных магнитах это движение обуславливается при помощи электромагнитного поля.

Для постоянных электромагнитов данное явление считается натуральным.

Обмотку для электромагнита выполняют из медных или алюминиевых изолированных проводов. Существуют и сверхпроводящие электромагниты. Магнитный провод делают из магнитно-мягкого материла, чаще всего стали (конструкционной, литой и электротехнической), чугуна и сплавов железа с кобальтом или никелем. Снижение потери на вихревой ток (ВхТ) осуществляется при помощи создания магнитопровода из множества листов.

Как сделать электромагнит 12в

Самый просто способ, как сделать электромагнит, – это взять обычный гвоздь, провод и батарейку. По всей длине стержня наматывают изолированный провод. Концы проводника прижимают к полюсам батарейки. Для того чтобы заряд не расходовался зря, один конец провода припаивают к положительному контакту. Другое окончание нужно делать в виде подпружиненной дуги, которую прижимают к клемме батарейки со знаком минус. На нижнем фото видно, как можно сделать электромагнит в домашних условиях.


Электромагнит своими руками

Обратите внимание! При изготовлении электромагнита с батарейкой можно использовать контактную колодку со старого устройства. Для отключения магнита будет достаточно вынуть батарейку из контактной коробки

Магнитное поле, создаваемое катушкой

Когда электрический ток проходит через обмотки катушек, он ведет себя как электромагнит. Плунжер,находящийся внутри катушки, притягивается к её центру с помощью магнитного потока внутри корпуса катушек, который, в свою очередь, сжимает небольшая пружина прикреплена к одному концу плунжера.

Сила и скорость движения плунжеров определяются силой магнитного потока, генерируемого внутри катушки.

Когда ток питания выключен (обесточен), электромагнитное поле, созданное ранее катушкой, разрушается, и энергия, накопленная в сжатой пружине, заставляет поршень вернуться в исходное положение покоя. Это движение плунжера вперед и назад известно как «ход» соленоидов, другими словами, максимальное расстояние, на которое плунжер может проходить в направлении «вход» или «выход», например, 0–30 мм.

Такой тип соленоида обычно называется линейным соленоидом из-за линейного направленного движения и действия плунжера.

Вращательный соленоид

Большинство электромагнитных соленоидов являются линейными устройствами, создающими линейную силу движения или движения вперед и назад. Однако имеются также вращательные соленоиды, которые производят угловое или вращательное движение из нейтрального положения либо по часовой стрелке, против часовой стрелки, либо в обоих направлениях (в двух направлениях).

Вращающиеся соленоиды можно использовать для замены небольших двигателей постоянного тока или шаговых двигателей, если угловое движение очень мало, а угол поворота — это угол, смещенный от начального к конечному положению.

Принцип действия

При протекании тока через проводник, вокруг него создается магнитное поле. Это магнитное поле можно усилить, если придать проводнику форму катушки. Но все же это еще не электромагнит. Вот если в эту катушку поместить сердечник из ферромагнитного материала (например, железа), тогда он станет электромагнитом.

Когда ток протекает по обмотке электромагнита, он создает магнитное поле, линии которого пронизывают сердечник, то есть ферромагнитный материал. Под действием этого поля, в сердечнике, мельчайшие области, которые обладают миниатюрными магнитными полями, называющиеся доменами, принимают упорядоченное положение. В результате, их магнитные поля складываются, и образуется одно большое и сильное магнитное поле, способное притянуть большие предметы. Причем, чем сильнее ток, тем сильнее магнитное поле, которое образуется электромагнитом. Но так будет происходить только до магнитного насыщения. Затем при увеличении тока, магнитное поле будет увеличиваться, но незначительно.

Если ток в электромагните убрать, то домены снова примут безупорядоченное положение, но часть их все же останется направленными одинаково. Эти оставшиеся направленными домены, будут создавать небольшое магнитное поле. Это явление называется магнитным гистерезисом.

Постоянные магниты. Что это?

Китайцы, как и греки, тоже замечали интересное свойство некоторых минералов притягивать к себе железосодержащие предметы. Слово «притягивать» китайцы ассоциируют со словами «прижиматься», «любить» и поэтому назвали такие минералы «чу-ши», что значит «любящий камень». Так как эти минералы создала природа, и человек не мог повлиять на естественное действие камней, их стали называть постоянными магнитами.

Теперь уже известно, что так интересно проявляется природный минерал магнитный железняк (магнетит). Это достаточно хрупкий черного цвета минерал, плотность его примерно 5000 кг/м3.

Магнитный железняк.

Древние люди приписывали магнитному железняку свойства «живой души». Минерал, по их словам, устремлялся к железу, как собака к куску мяса. Ученые объясняют отношение древних к явлениям природы незнанием физики.

На самом деле, все заключается в особом виде материи – поле.

Магнитное поле и притягивает к постоянному магниту железные предметы, ведь, например, мелкие гвоздики или кнопки устремляются к магниту даже без соприкосновения с ним, а на некотором расстоянии.

Магнетит (природный магнитный железняк) проявляет свойства притягивания не очень сильно. Человеком на его основе созданы искусственные магниты с более мощным магнитным полем. В качестве материала в них используются такие металлы, как кобальт, никель и, конечно же, железо. Такие металлы способны намагничиваться, попадая в магнитное поле, а потом становятся самостоятельными магнитами.


Разные формы искусственных магнитов.

Какую бы форму не имел магнит, у него есть участки, где наиболее сильно проявляются магнитные свойства. Эти участки называют магнитными полюсами. У каждого, даже самого маленького магнита, есть два полюса. Современные технологии позволяют намагничивать металлические предметы так, что у них образуется и 4 и 6 полюсов.

Увидеть, как по-разному притягиваются железные опилки к магниту, можно на простейшем опыте с дугообразным школьным магнитом. Просто поднести к опилкам магнит, опилки тут же «прилипнут» к нему:


Дугообразный магнит.

Полюсами такого магнита будут края дуги, где больше всего скопилось железных опилок.

У полосового магнита, форма которого прямоугольный параллелепипед, полюса находятся далеко друг от друга. Чем ближе к середине, тем меньше проявляются магнитные свойства.


Полосовой магнит.

Классификация

Электромагниты по способу создания магнитного потока делятся на три вида

  • Электромагниты переменного тока
  • Нейтральные электромагниты постоянного тока
  • Поляризованные электромагниты постоянного тока

В электромагнитах переменного тока, магнитный поток изменяется, как по направлению, так и по значению, разница только в том, что изменяется он с удвоенной частотой тока.

В нейтральных электромагнитах постоянного тока, направление магнитного потока не зависит от направления тока.

В поляризованных электромагнитах постоянного тока, как вы уже поняли, направление магнитного потока зависит от направления тока. При этом эти электромагниты обычно состоят из двух. Один – постоянный магнит, создает поляризующий магнитный поток, который нужен при отключении основного, рабочего электромагнита.

Расчёты

Перед тем, как начать собирать электромагнит своими руками, делают предварительный расчёт его параметров. Элементы конструкции рассчитывают отдельно для ЭМ постоянного и переменного тока.

Для постоянного тока

Перед тем, как производить расчёты, определяются с требуемой величиной магнитодвижущей силы (МДС) катушки. Параметры обмотки должны обеспечивать нужную МДС, в то же время катушка не должна перегреваться, иначе будет потерян изоляционный слой провода намотки. Исходными данными для расчёта являются напряжение в проводе электромагнитной катушки и требуемая величина магнитодвижущей силы.

Методики расчёта электромагнитов постоянного тока постоянно публикуются в сети интернета. Там же можно подобрать формулы для определения МДС, поперечного сечения сердечника и провода обмотки, его длины.

Дополнительная информация. В основном в интернете ищут расчёты электромагнитов на 12 вольт, сделанных своими руками. В зависимости от потребностей, можно пойти разными путями расчётов. В основном выбирают «рецепты» по определению сечения и длины провода обмотки с питанием от стандартной батарейки формата «А» или «АА».

Для переменного тока

Основой для ЭМ переменного тока является расчёт обмотки. Как и в предыдущем случае, руководствуются исходными требованиями величины МДС. Несмотря на большое количество рекомендуемых формул расчёта, чаще всего «способности» устройства определяют опытным подбором параметров деталей его конструкции. Методики расчёта ЭМ переменного тока всегда можно найти во всемирной информационной паутине (интернете).

Сверхпроводящий электромагнит

Отличие сверхпроводящего электромагнита от обычного в том, что в его обмотке, вместо обычно проводника, используется сверхпроводник. При этом его обмотка охлаждена с помощью жидкого гелия до очень низких температур. Его преимущество в том, что ток в нем достигает очень больших значений, благодаря тому, что у сверхпроводника, практически отсутствует сопротивление. Поэтому магнитное поле приобретает большую силу. Эксплуатация таких электромагнитов обходится дешевле, так как в них отсутствуют тепловые потери в обмотке. Сверхпроводящие магниты используются в аппаратах МРТ, ускорителях частиц и в другом научном оборудовании.

Примеры использования ЭМ

В качестве примеров применения электромагнитов можно привести следующие приборы:

  • телевизоры;
  • трансформаторы;
  • пусковые устройства автомобилей.

Телевизоры

Современные жилища, как правило, заполнены различными электроприборами. Находясь вблизи телеприёмника, они могут воздействовать магнитной индукцией на экран телевизора (ТВ). В ТВ уже существует встроенная защита от намагничивания экрана. Если на поле дисплея появились разноцветные пятна, то надо выключить прибор на 10-20 минут. Встроенная защита уберёт намагниченность экрана.

В некоторых случаях этот способ не оказывает нужную помощь. Тогда применяют специальный электромагнит, который называют дросселем. Это своеобразная катушка индукции. Прибор подключают к розетке бытовой электросети и проводят им вдоль и поперёк экрана. В результате наведённые магнитные поля поглощаются дросселем.

Трансформаторы

Конструкция трансформаторов очень схожа со строением электромагнитов. И там, и там есть обмотки и сердечники. Отличие трансформатора от ЭМ состоит в том, что у первого магнитопровод имеет замкнутую форму. Поэтому суммированная магнитная сила обнуляется встречными магнитными потоками.

Пусковое устройство автомобиля

Стартер автомобиля работает как пусковое устройство двигателя. Он включается на время заводки мотора. Временная передача стартового усилия на коленвал двигателя обеспечивается втягивающим электромагнитом.

При повороте ключа в замке зажигания ЭМ втягивает шестерню в зубцы коленвала. Во время контакта электродвигатель стартера проворачивает мотор до возникновения цикла сгорания топлива в цилиндрах мотора. Затем тяговое реле отключает электромагнит, и шестерня стартера возвращается в исходное положение. После чего автомобиль может двигаться.


Стартер с тяговым реле

Электромагниты настолько плотно вошли в сферу деятельности человека, что существование без них немыслимо. Нехитрые устройства можно встретить повсеместно. Знание принципа их действия позволит домашнему мастеру справляться с мелким ремонтом бытовых электротехнических устройств.

Принцип действия

Простейший электромагнит получается в том случае, когда внутрь соленоида помещается стальной сердечник, а через витки пропускается электрический ток. В результате, происходит намагничивание сердечника, который приобретает свойства постоянного магнита. Таким образом, получается электромагнит, в котором стальной сердечник, при отсутствии электрического тока, полностью размагничивается.

Магнитное поле, создаваемое электромагнитом, значительно выше поля соленоида. В данном случае, поле сердечника накладывается на поле соленоида и, в конечном итоге, совместное магнитное поле, полученное при воздействии электрического тока, существенно возрастает.

Данное изобретение широко используется в электротехнике в качестве электромагнитов постоянного тока. Основное применение эта конструкция нашла в исполнительных механизмах, чаще всего, в тормозных устройствах различных подъемных механизмов.

Устройство электромагнита постоянного тока

На практике, существуют электромагниты постоянного тока с магнитопроводящим корпусом, имеющем фланцы. В корпусе устанавливается катушка, внутри которой размещаются два якоря. Якорные полюса имеют форму усеченного конуса, позволяющую им взаимодействовать между собой. От катушки и фланцев якоря отделяются. Они оборудованы тягами, имеющими на концах шаровые соединения, обеспечивающие связь с внешними нагрузками.

В дополнение ко всему, электромагнит имеет два ограничителя, расположенные на якорях. Эти ограничители обеспечивают соприкосновение якорей между собой в определенной точке, при их движении навстречу друг другу. Дополнительное отделение якорей от катушки и фланцев производится при помощи специальных гильз, изготовленных из немагнитных материалов.

Электронное управление для подъемных электромагнитов

Когда возникает необходимость управлять им с помощью внешнего устройства или схемы микроконтроллера, потребуется соответствующая схема на основе транзистора обычного биполярного или MOSFET. Принципиальная схема приведенная ниже, демонстрирует простейшую форму привода электромагнита и может использоваться для приведения в действие большинства маломощных подъемных электромагнитов.

Устройство требует входного напряжения (VIN) для приведения в действие электромагнита, а также входного сигнала управления (SIG) от контроллера или блока синхронизации, который переключает силовой полевой МОП-транзистор, позволяя току возбуждения возбуждать электромагнит. Дополнительный диод, расположенный параллельно электромагниту, предназначен для защиты полевого транзистора от скачка индуктивного напряжения, который возникает при обесточивании электромагнита.

Дополнительные конструкции электромагнита

В большинстве конструкций совпадение якорей по осям обеспечивается с помощью центрирующего узла, представляющего собой вал из немагнитных материалов. Один конец данного вала жестко закрепляется в осевом отверстии первого якоря и имеет возможность перемещаться вдоль. Другой конец вала устанавливается в осевое отверстие второго якоря с применением подшипников скольжения.

Данная конструкция недостаточно надежна, поскольку существует возможность заклинивания свободного конца вала из-за попадания посторонних предметов. Эту проблему решают электромагниты постоянного тока, применяемые в центрирующем узле и обеспечивающие надежную работу вала при заклинивании одного из его концов.

Источник

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]