Механические свойства характеризуют способность материалов сопротивляться действию внешних сил. К основным механическим свойствам относятся прочность, твердость, ударная вязкость, упругость, пластичность, хрупкость и др.
Прочность — это способность материала сопротивляться разрушающему воздействию внешних сил.
Твердость — это способность материала сопротивляться внедрению в него другого, более твердого тела под действием нагрузки.
Вязкостью называется свойство материала сопротивляться разрушению под действием динамических нагрузок.
Упругость — это свойство материалов восстанавливать свои размеры и форму после прекращения действия нагрузки.
Пластичностью называется способность материалов изменять свои размеры и форму под действием внешних сил, не разрушаясь при этом.
Хрупкость — это свойство материалов разрушаться под действием внешних сил без остаточных деформаций.
При статических испытаниях на растяжение определяют величины, характеризующие прочность, пластичность и упругость материала. Испытания производятся на цилиндрических (или плоских) образцах с определенным соотношением между длиной l0 и диаметром d0. Образец растягивается под действием приложенной силы Р (рис. 1, а) до разрушения. Внешняя нагрузка вызывает в образце напряжение и деформацию. Напряжение σ — это отношение силы Р к площади поперечного сечения F0, МПа:
σ = P/F0,
Деформация характеризует изменение размеров образца под действием нагрузки, %:
ε = [(l1-l0)/l0] · 100,
где l1 — длина растянутого образца.
Деформация может быть упругой (исчезающей после снятия нагрузки) и пластической (остающейся после снятия нагрузки).
При испытаниях стоится диаграмма растяжения, представляющая собой зависимость напряжения от деформации. На рис. 1 приведена такая диаграмма для низкоуглеродистой стали. После проведения испытаний определяются следующие характеристики механических свойств.
Предел упругости σу — это максимальное напряжение при котором в образце не возникают пластические деформации.
Предел текучести σт — это напряжение, соответствующее площадке текучести на диаграмме растяжения (рис. 1). Если на диаграмме нет площадки текучести (что наблюдается для хрупких материалов), то определяют условный предел текучести σ0,2 — напряжение, вызывающее пластическую деформацию, равную 0,2 %. Предел прочности (или временное сопротивление) σв — это напряжение, отвечающее максимальной нагрузке, которую выдерживает образец при испытании.
Относительное удлинение после разрыва δ — отношение приращения длины образца при растяжении к начальной длине l0, %:
δ = [(lk-l0)/l0]·100,
где lк — длина образца после разрыва.
Рис. 1. Статические испытания на растяжение: а – схема испытания;
б – диаграмма растяжения
Относительным сужением после разрыва ψ называется уменьшение площади поперечного сечения образца, отнесенное к начальному сечению образца, %:
ψ = [(F0-Fk)/F0]·100,
где Fк — площадь поперечного сечения образца в месте разрыва. Относительное удлинение и относительное сужение характеризуют пластичность материала.
Твердость металлов измеряется путем вдавливания в испытуемый образец твердого наконечника различной формы.
Метод Бринелля основан на вдавливании в поверхность металла стального закаленного шарика под действием определенной нагрузки. После снятия нагрузки в образце остается отпечаток. Число твердости по Бринеллю НВ определяется отношением нагрузки, действующей на шарик, к площади поверхности полученного отпечатка.
Метод Роквелла основан на вдавливании в испытуемый образец закаленного стального шарика диаметром 1,588 мм (шкала В) или алмазного конуса с углом при вершине 120° (шкалы А и С). Вдавливание производится под действием двух нагрузок — предварительной равной 100 Н и окончательной равной 600, 1000. 1500 Н для шкал А, В и С соответственно. Число твердости по Роквеллу HRA, HRB и HRC определяется по разности глубин вдавливания.
В методе Виккерса применяют вдавливание алмазной четырехгранной пирамиды с углом при вершине 136°. Число твердости по Виккерсу HV определяется отношением приложенной нагрузки к площади поверхности отпечатка.
Ударная вязкость определяется работой A, затраченной на разрушение образца, отнесенной к площади его поперечною сечения F; Дж/м2:
KC=A/F
Испытания проводятся ударом специального маятникового копра. Для испытания применяется стандартный надрезанный образец, устанавливаемый на опорах копра. Маятник определенной массы наносит удар по стороне противоположной надрезу.
К физическим свойствам материалов относится плотность, температура плавления, электропроводность, теплопроводность, магнитные свойства, коэффициент температурного расширения и др.
Плотностью называется отношение массы однородного материала к единице его объема.
Это свойство важно при использовании материалов в авиационной и ракетной технике, где создаваемые конструкции должны быть легкими и прочными.
Температура плавления — это такая температура, при которой металл переходит из твердого состояния в жидкое. Чем ниже температура плавления металла, тем легче протекают процессы его плавления, сварки и тем они дешевле.
Электропроводностью называется способность материала хорошо и без потерь на выделение тепла проводить электрический ток. Хорошей электропроводностью обладают металлы и их сплавы, особенно медь и алюминий. Большинство неметаллических материалов не способны проводить электрический ток, что также является важным свойством, используемом в электроизоляционных материалах.
Теплопроводность — это способность материала переносить теплоту от более нагретых частей тел к менее нагретым. Хорошей теплопроводностью характеризуются металлические материалы.
Магнитными свойствами т.е. способностью хорошо намагничиваться обладают только железо, никель, кобальт и их сплавы.
Коэффициенты линейного и объемного расширения характеризуют способность материала расширяться при нагревании. Это свойство важно учитывать при строительстве мостов, прокладке железнодорожных и трамвайных путей и т.д.
Химические свойства характеризуют склонность материалов к взаимодействию с различными веществами и связаны со способностью материалов противостоять вредному действию этих веществ. Способность металлов и сплавов сопротивляться действию различных агрессивных сред называется коррозионной стойкостью, а аналогичная способность неметаллических материалов — химической стойкостью.
К эксплуатационным (служебным) свойствам относятся жаростойкость, жаропрочность, износостойкость, радиационная стойкость, коррозионная и химическая стойкость и др.
Жаростойкость характеризует способность металлического материала сопротивляться окислению в газовой среде при высокой температуре.
Жаропрочность характеризует способность материала сохранять механические свойства при высокой температуре.
Износостойкость — это способность материала сопротивляться разрушению его поверхностных слоев при трении.
Радиационная стойкость характеризует способность материала сопротивляться действию ядерного облучения.
Технологические свойства определяют способность материалов подвергаться различным видом обработки. Литейные свойства характеризуются способностью металлов и сплавов в расплавленном состоянии хорошо заполнять полость литейной формы и точно воспроизводить ее очертания (жидкотекучестъю), величиной уменьшения объема при затвердевании (усадкой), склонностью к образованию трещин и пор, склонностью к поглощению газов в расплавленном состоянии. Ковкость — это способность металлов и сплавов подвергаться различным видам обработки давлением без разрушения. Свариваемость определяется способностью материалов образовывать прочные сварные соединения. Обрабатываемость резанием определяется способностью материалов поддаваться обработке режущим инструментом.
Типы кристаллических решеток
Все металлы в твердом состоянии представляют собой кристаллы. Кристалл – это совокупность атомов, расположенных в пространстве не хаотично, а в геометрически правильной последовательности. Пространственное расположение атомов и образует кристаллическую решетку.
В узлах пространственной кристаллической решетки металла правильно расположены положительно заряженные ионы, а между ними перемещаются свободные электроны – электронный газ. Переходя от одного катиона к другому, они осуществляют связь между ионами и превращают кристалл металла в единое целое. Эта связь, называемая металлической, возникает между атомами металлов за счет перекрывания электронных облаков внешних электронов. Металлическая связь отличается от неполярной ковалентной связи своей ненаправленностью. В кристалле металлического типа электроны не закреплены между двумя атомами, а принадлежат всем атомам данного кристалла, т. е. делокализованы. К особенности структуры металлических кристаллов относятся большие координационные числа – 8÷12, которым соответствует высокая плотность упаковки.
Кристаллическая решетка каждого металла состоит из положительно заряженных ионов одинакового размера, расположенных в кристалле по принципу наиболее плотной упаковки шаров одинакового диаметра.
Различают три основных типа упаковки, или кристаллической решетки.
1. Объемноцентрированная кубическая решетка с координационным числом, равным 8 (натрий, калий, барий). Атомы металла расположены в вершинах куба, а один – в центре объема. Плотность упаковки шарообразными ионами в этом случае составляет 68 %.
2. Гранецентрированная кубическая решетка с координационным числом, равным 12 (алюминий, медь, серебро). Атомы металла расположены в вершинах куба и в центре каждой грани. Плотность упаковки – 74 %.
3. Гексагональная решетка с координационным числом 12 (магний, цинк, кадмий). Атомы металла расположены в вершинах и центре шестигранных оснований призмы, а еще три – в ее средней плоскости. Плотность упаковки – 74 %.
Из-за неодинаковой плотности атомов в различных направлениях кристалла наблюдаются разные свойства. Это явление, получившее название анизотропия, характерно для одиночных кристаллов – монокристаллов. Однако большинство металлов в обычных условиях имеют поликристаллическое строение, т. е. состоят из значительного числа кристаллов, или зерен, каждое из которых анизотропно. Разная ориентировка отдельных зерен приводит к усреднению свойств поликристаллического металла.
Особенности кристаллических решеток обусловливают характерные физические свойства металлов.
Свойства сплавов
Свойства, которыми обладают металлические сплавы, подразделяются на:
- Структурно — нечувствительные. Они обуславливаются свойствами компонентов, и их процентным содержанием. К ним относятся :
- плотность;
- температура плавления;
- тепловые и упругие характеристики;
- коэффициент термического расширения;
- структурно — чувствительные. Определяются свойствами элемента — основы.
- https://www.youtube.com/watch?v=qgzo40bfL1o
- Все сплавные материалы в той или иной мере проявляют характерные металлические свойства:
- блеск;
- пластичность;
- теплопроводность;
- электропроводность.
- Кроме того, свойства подразделяют на:
- Химические, определяемые взаимоотношениями материала с химически активными веществами.
- Механические, определяемые взаимодействием с другими физическими телами.
- Основными характеристиками сплавных материалов, влияющими на их пригодность для применения в той или иной инженерной конструкции, являются:
- Прочность-характеристика силы противостояния механическим нагрузкам и разрушению.
- Твердость-способность к сопротивлению внедрению в материал твердых тел.
- Упругость-возможность восстановить исходную форму тела после деформации, вызванной внешней нагрузкой.
- Пластичность — свойство, обратное упругости. Определяет способность материала к изменению формы тела без его разрушения под приложенной нагрузкой и сохранения этой новой формы.
- Вязкость — способность сопротивляться быстро возрастающим (ударным) нагрузкам
Металлопрокат
Различают физические, химические, механические и технологические свойства металлов и сплавов.
Физические свойства металлов определяются их физическим состоянием или отношением к различным физическим процессам (действию высоких и низких температур, электрического тока и др.). К ним относятся плотность, температура плавления, кристаллизации, теплопроводность, температурное расширение, электрическое сопротивление, электрическая проводимость и др.
Плотность —
это масса единицы объема металла в абсолютно плотном состоянии (кг/м3). Абсолютная плотность называется также удельным весом (массой).
Температура плавления
— это температура, при которой металл из твердого состояния переходит в жидкое (расплавленное). Температура, при которой металл при охлаждении переходит из расплавленного состояния в твердое, называется
температурой кристаллизации,
Способность материала передавать тепло через толщу от одной своей поверхности к другой называется теплопроводностью.
Она определяется коэффициентом теплопроводности, показывающим количество тепла, проходящее через образец материала толщиной 1 м и площадью 1 м2 в течение часа при разнице температур на противоположных сторонах образца 1°C.
Температурное расширение
— это способность материала расширяться вследствие нагревания. Она характеризуется коэффициентом линейного расширения, показывающим, на какую долю первоначальной длины расширился материал при повышении температуры на 1°C.
Электрическое сопротивление
определяется способностью материала сопротивляться прохождению электрического тока. Оно измеряется в омах (Ом).
Электрическая проводимость
— способность материала проводить электрический ток. Единица — сименс (См).
Химические свойства металлов определяются их сопротивляемостью воздействию окружающей среды, кислот, щелочей и других химических реагентов. Для оценки степени разрушения металлов в различных средах служит показатель, который называется коррозионной стойкостью.
Он определяется скоростью коррозии, т. е. массой материала, превращенной в ржавчину с единицы поверхности за единицу времени, либо толщиной разрушенного слоя (мм/год). Характеристиками коррозионной стойкости могут быть также изменение массы изделия, его механических свойств, электросопротивления и количество выделившегося водорода за определенный период времени.
Механические свойства металлов определяют их способность сопротивляться действию внешних механических сил. К ним относятся прочность, пластичность, твердость, хрупкость, выносливость, усталость, упругость, истираемость, сопротивление износу и ползучесть.
Прочность
— это свойство материала сопротивляться разрушению под действием приложенных механических сил.
Пластичность
—свойство металла необратимо деформироваться без нарушения сплошности под действием механических нагрузок, поглощая при этом механическую энергию.
Твердость
— это свойство материала сопротивляться проникновению в него другого, не получающего остаточной деформации тела.
Хрупкость
определяется способностью материала разрушаться без заметного поглощения механической энергии.
Свойство материала выдерживать, не разрушаясь, большое число повторно переменных напряжений называется выносливостью.
Постепенное разрушение материала при большом числе повторно-переменных напряжений называется
усталостью.
Упругость
— свойство материала восстанавливать свою форму и объем после снятия нагрузки. Она обусловлена взаимодействием между атомами и их тепловым движением.
Истираемость
— свойство материала сопротивляться действию внешних механических сил (сил трения), вызывающих постепенное разрушение его поверхности.
Сопротивление износу
— свойство материала сопротивляться одновременному действию истирания и ударов.
Ползучесть
— свойство материала медленно и непрерывно деформироваться при постоянном напряжении и повышенной температуре.
Для определения механических свойств металлов проводят статические испытания на растяжение, сжатие, изгиб и кручение, динамические испытания на ударную вязкость, а также испытания на усталость, ползучесть, длительную прочность и твердость.
Основными характеристиками механических свойств, определяемыми статическими испытаниями на растяжение, сжатие, изгиб и кручение, являются пределы текучести, пропорциональности, упругости, истинное и временное сопротивление разрыву, измеряемые в паскалях (Па), а также относительное и остаточное удлинение и относительное сужение.
Динамические испытания позволяют определить важнейшую механическую характеристику металлов, подвергающихся воздействию ударных нагрузок, — ударную вязкость (Дж/м2).
Испытания на усталость проводят для металлов, эксплуатируемых в условиях длительных повторно-переменных нагрузок, результатом которых является возникновение на поверхности и разрастание трещин, приводящих в конечном счете к разрушению. Испытания на усталость позволяют определить предел выносливости (Па).
Испытания на ползучесть и длительную прочность необходимы для металлов, эксплуатируемых в условиях высоких температур и длительных нагрузок. При этом основными характеристиками являются условный предел ползучести и длительная прочность.
Наиболее распространенными методами определения механических свойств металлов являются испытания на твердость. Они основаны на статическом вдавливании стального закаленного шарика (метод Бринелля), алмазного конуса или стального закаленного шарика (метод Роквелла) или алмазной пирамиды (метод Виккерса) на специальных приборах, называемых твердомерами. Соответственно определяется число твердости по Бринеллю (HB), Роквеллу (HR) и Виккерсу (HV),
Для определения твердости отдельных зерен металла или разных частей одного зерна производят испытание на микротвердость. Измерения производят на специальных приборах вдавливанием алмазной пирамиды и исследованием получаемого отпечатка при помощи металлографического микроскопа.
Известны также динамические методы измерения твердости.
К ним относятся метод упругого отскока бойка (по Шору), а также измерение твердости способом ударного отпечатка. Максимальная твердость материалов, по Шору, равняется 100 единицам.
Технологические свойства металлов определяют их способность подвергаться различным методам обработки. К ним относятся обрабатываемость резаньем и давлением, свариваемость, упрочняемость, а также литейные и другие свойства.
Обрабатываемость резаньем
оценивается скоростью затупления резца при точении на заданных режимах с обеспечением необходимых параметров получаемой
поверхности. Она измеряется в процентах к скорости обработки стали или свинцовистой латуни.
Обрабатываемость давлением
в горячем и холодном состоянии оценивают технологическими пробами на усадку, изгиб, вытяжку сферической лунки и др., а также показателями пластичности, твердости и упрочняемости.
Свариваемость
— это свойство металлов образовывать неразъемные соединения с требуемыми механическими свойствами.
Литейные свойства
определяются совокупностью таких показателей, как температура плавления и кристаллизации, плотность, жидкотекучесть, усадка, и Др.
Упрочняемость
— это способность металлов приобретать более высокие механические показатели после механической и термической обработок.
Строение металлов и сплавов, их кристаллизация
Технологические свойства стали
Сталь считается одним из самых распространенных металлов, ее технологические свойства зависят от химического состава, различные примеси, входящие в нее, могут улучшить или ухудшить данные характеристики.
- Увеличение в составе стали углерода значительно повышает ее прокаливаемость, в тоже время она понижает ее пригодность к ковке. Для выполнения этой операции, а также прокатки, содержание углерода не должно превышать 1,4%.
- Добавление в сталь марганца существенно снижает теплопроводность материала, что снижает ее способность к свариванию. В тоже время, при осуществлении правильного равномерного нагрева (не слишком быстрого) такие стали хорошо поддаются ковке.
- Применение никеля способно улучшить пластичные качества сплава, поэтому он способствует ковке. Но следует учитывать тот факт, что тот же никель образует устойчивую окалину в процессе нагрева. При ковке она не разрушается, поэтому может быть вкована в металл, что существенно снизит качество изделия.
- Повышение содержания хрома приводит к увеличению прочности, поэтому ковка и пригодность к прокату у таких сплавов удовлетворительна, существует большая вероятность образования трещин.
- Излишек молибдена приводит к снижению теплопроводности, что делает сталь очень чувствительной к температурному режиму обработки, нагревать и охлаждать ее следует в строгом соблюдении с технологией. Для ковки данных металлов необходимо применять более мощное оборудование.
- А вот применение ванадия, наоборот, улучшает ковкость и делает сталь более устойчивой к перегреву.
К негативным примесям, существенно влияющим на технологические характеристики, можно отнести серу и фосфор. Излишек данных веществ может привести к красноломкости и хладноломкости соответственно. То есть сталь с избытком серы становится хрупкой при нагреве, а если в ней присутствует большое количество фосфора, то она будет ломаться при отрицательных температурах. Именно поэтому при выплавке стали многие усилия направлены на снижение данных примесей в металле, но, к сожалению, избавиться от них полностью не выходит.
Как видите, химические составляющие стали оказывают огромное значение на ее технологические свойства, поэтому при выборе метода обработки должен выполняться тщательный анализ состава сплава, в противном случае могут возникнуть проблемы, как в производстве, так и при эксплуатации изделия.
Механические свойства
Механическими свойствами называются реакции материалов на приложенные к ним механические нагрузки.
Физические и механические свойства материалов часто пересекаются, однако существует ряд исключительно механических показателей. Со стороны механики вещества характеризуются упругостью, прочностью, твердостью, пластичностью, усталостью, хрупкостью и др.
Упругостью является способность тел (твердых) к сопротивлению воздействиям, направленным на изменение их объема либо формы. Объект с высокой величиной упругости устойчив к механическим напряжениям и способен самостоятельно восстанавливаться, возвращаясь в исходное состояние после прекращения воздействия.
Прочность показывает, насколько материал устойчив к разрушению. Его максимальный показатель для определенного объекта называется пределом прочности. Пластичность также относится к прочностным показателям. Она является свойством (характерным для твердых тел) бесповоротно изменять свой внешний вид (деформироваться) под влиянием сил, исходящих извне.
Усталостью называется накопительные процесс, при котором в результате повторяющихся механических воздействий растет уровень внутреннего напряжения материала. Этот уровень будет увеличиваться до тех пор, пока не пересечет предел упругости, в результате чего материал начнет разрушаться.
Одним из самых распространенных свойств является твердость. Она представляет собой уровень сопротивления объекта вдавливанию.
Основные определения
Нужно четко понимать, что сплавы металлов в большинстве случаев образуются вообще без участи человека. Дело в том, что получить абсолютно чистый с химической точки зрения материал можно только в лаборатории. В любом металле, который используется в бытовых условиях, наверняка есть следы другого элемента. Классический пример – золотые украшения. В каждом из них есть определенная доля меди. Впрочем, в классическом смысле под этим определением все равно понимают соединение двух и более металлов, которое было целенаправленно получено человеком.
Вся история человека является отличным примером того, как сплавы металлов оказались способны оказать огромное влияние на развитие всей нашей цивилизации. Не случайно есть даже длительный исторический период, который называется «Бронзовый век».
Алюминиевые сплавы
Если первая половина XX века была веком стали, то вторая по праву назвалась веком алюминия.
Алюминиевые сплавы подразделяют на:
- Литейные (с кремнием). Применяются для получения обычных отливок.
- Для литья под давлением (с марганцем).
- Увеличенной прочности, обладающие способностью к самозакаливанию (с медью).
https://youtube.com/watch?v=5v8kGT8HK5c
Основные преимущества соединений алюминия:
- Доступность.
- Малый удельный вес.
- Долговечность.
- Устойчивость к холоду.
- Хорошая обрабатываемость.
- Электропроводность.
Основным недостатком сплавных материалов является низкая термостойкость. При достижении 175°С происходит резкое ухудшение механических свойств.
Еще одна сфера применения — производство вооружений. Вещества на основе алюминия не искрят при сильном трении и соударениях. Их применяют для выпуска облегченной брони для колесной и летающей военной техники.
Весьма широко применяются алюминиевые сплавные материалы в электротехнике и электронике. Высокая проводимость и очень низкие показатели намагничиваемости делают их идеальными для производства корпусов различных радиотехнических устройств и средств связи, компьютеров и смартфонов.
Слитки из алюминиевых сплавов
Присутствие даже небольшой доли железа существенно повышает прочность материала, но также снижает его коррозионную устойчивость и пластичность. Компромисс по содержанию железа находят в зависимости от требований к материалу. Отрицательное влияние железа скомпенсируют добавлением в состав лигатуры таких металлов, как кобальт, марганец или хром.
Конкурентом алюминиевым сплавам выступают материалы на основе магния, но ввиду более высокой цены их применяют лишь в наиболее ответственных изделиях.
Методы изучения строения металлов
Изучение строения металлов и сплавов производится методами макро— и микроанализа, рентгеновским методом, а также методами дефектоскопии (рентгеновской, магнитной, ультразвуковой).
Методом макроанализа изучается макроструктура, т.е. структура, видимая невооруженным глазом или с помощью лупы. При этом выявляются крупные дефекты: трещины, усадочные раковины, газовые пузыри и иное, а также неравномерность распределения примесей в металле. Макроструктуру определяют по изломам металла, по макрошлифам (это образец металла или сплава, одна из сторон которого отшлифована, тщательно обезжирена, протравлена и рассматривается с помощью лупы с увеличением в 5–10 раз).
Микроанализ выявляет структуру металла или сплава по микрошлифам, дополнительно отполированным до зеркального блеска. Шлифы рассматривают в отраженном свете под оптическим микроскопом при увеличении до 3000 раз. Из-за различной ориентировки зерен металла они травятся не в одинаковой степени, и под микроскопом свет также отражается неодинаково. Границы зерен благодаря примесям травятся сильнее, чем основной металл, и выявляются более рельефно. Зная микроструктуру, можно объяснить причины изменения свойств металла.
С помощью рентгеновского анализа изучают атомную структуру металлов, типы и параметры кристаллических решеток, а также дефекты, лежащие в глубине. Этот анализ, основанный на дифракции (отражении) рентгеновских лучей рядами атомов кристаллической решетки, позволяет обнаружить дефекты, не разрушая металла. Вместах дефектов рентгеновские лучи поглощаются меньше, чем в сплошном металле, и поэтому на фотопленке такие лучи образуют темные пятна, соответствующие форме дефекта.
Магнитным методом исследуют дефекты в магнитных металлах (сталь, никель и др.) на глубине до 2 мм. Для этого испытываемое изделие намагничивают, покрывают его поверхность порошком железа, осматривают поверхность и размагничивают изделие. Вокруг дефекта образуется неоднородное поле, и магнитный порошок повторяет очертания дефекта. Ультразвуковым методом осуществляется эффективный контроль качества металла изделий и заготовок практически любых размеров. В импульсных ультразвуковых дефектоскопах ультразвуковая волна от щупа-излучателя распространяется в контролируемом изделии и при встрече с дефектом отражается от него. При этом отраженные волны принимаются, усиливаются и передаются на показывающий индикатор.
Классификация металлов
В природе существует несколько видов металлов, которые отличаются по своим свойствам, характеристикам и внешнему виду. Каждая из разновидностей по-разному ведёт себя при взаимодействии с другими материалами или под воздействием факторов окружающей среды.
Виды металлов
Черные
В эту группу входит железо и сплавы на его основе. Характерные особенности чёрных металлов:
- высокая плотность;
- температура плавления гораздо выше чем у представителей других групп;
- цвет — тёмно-серый.
К представителям группы чёрных металлов относятся: вольфрам, хром, кобальт, молибден, железо, никель, титан, марганец, уран, нептуний, плутоний и другие. Используются они в различных отраслях и обладают разными свойствами. Популярными считаются сталь и чугун.
В состав черных металлов входит не только железо, но и различные примеси к которым относится сера, фосфор или кремний. В своём составе они содержат разное количество углерода.
Цветные
Представители этой группы более востребованы. Связано это с тем, что цветные металлы применяют в большем количестве отраслей. Их могут использовать в машиностроении, передовых технологиях, радиоэлектронике, металлургии. Ключевые особенности цветных металлов:
- низкая температура плавления;
- большой цветовой спектр;
- хорошая пластичность.
Из-за низкой прочности представителей цветной группы их используют в связке с разными видами более плотных материалов. Представители этой группы: магний, алюминий, никель, свинец, олово, цинк, серебро, платина, родий, золото и другие.
Мягкие
Можно выделить отдельные виды металлов, которые будут относиться к группе твёрдых и мягких. В качестве мягких выступают:
- Алюминий — обладает устойчивостью к коррозии, легким весов, хорошей пластичностью. Используется в электропромышленности, при строительстве самолётов и изготовлении посуды.
- Магний — это лёгкий материал, который подвержен воздействию коррозийных процессов. Чтобы избавиться от этого недостатка, его используют в сплавах с другими материалами.
Это ключевые представители группы мягких металлов.
Твердые
Популярными материалами этой группы являются:
- Вольфрам — считается самым тугоплавким металлом. Дополнительно к этому, он является одним из самых прочных. Стойкий к химическим воздействиям.
- Титан — чем меньше вкраплений других материалов в этом металле, тем прочнее он становится. Используется при строительстве машин, ракет, самолётов, кораблей, а также в химической промышленности. Он хорошо обрабатываются под давлением, не поддается воздействию коррозийных процессов.
- Уран — ещё один металл, считающийся одним из самых прочных в мире. Радиоактивен и используется в различных направлениях промышленности.
Представители «твёрдой группы» хуже поддаются обработке и используются в меньшем количестве направлений деятельности человека, чем мягкие.
Физико-химические и химические свойства материалов
Отметим, что именно во время проведения ряда анализов важно суметь не только выявить входящие элементы, но их количество и пропорции. А для этого нужно определить химические и физико-химические свойства предметов исследования
Основные химические свойства материалов:
- способность вступать в реакцию с летучими веществами и кислородом;
- кислотостойкость;
- щелочестойкость.
Свойства материалов характеризуют способность взаимодействовать с ними или противодействовать разрушительным свойствам этих растворов.
Физико-химические свойства материалов:
- цвет и плотность;
- температура, при которой материал плавится и распадается;
- теплопроводность и электропроводимость материала;
- магнитные свойства и устойчивость к коррозии, если присутствуют металлы.
Какие виды встречаются?
Свойства металлов во многом зависят от того, к какому виду тот или иной ингредиент относится. В этом ракурсе стоит выделить черные и цветные компоненты.
Чермет
Данная группа считается самой распространенной и востребованной в объемном ракурсе. Свое название они получили благодаря своему цвету – темному. При этом отличительной особенностью черных руд считается низкая стоимость.
В свою очередь, классифицируется на:
- железные – сюда стоит отнести железосодержащие материалы и основы, а также никелевые и кобальтовые сплавы;
- тугоплавкие основания для сплавов (имеют температуру плавления равную или превышающую 1600 градусов Цельсия, что является достаточно высоким показателем);
- низкопрочностные редкоземельные элементы, такие как церий, неодим и другие (активно используются в производстве микроэлектроники).
Цветмет
Принято считать, что эта группа элементов отличается меньшими прочностными характеристиками, температурой плавления, устойчивостью к механическим нагрузкам, но более солидной стоимостью. Понятно, что по всем этим позициям встречаются исключения.
Цветные ранжируют на следующие категории:
- Легкие – литий, натрий и так далее. Они характеризуются небольшой плотностью – до 5 тонн на метр кубический. Это всего в 5 раз больше воды.
- Тяжелые – свинец, серебро, золото. Их плотность в разы выше легких.
- Благородные – те же золото и серебро, а также платина, плутоний.
Также поделить «цветные» разновидности можно на тугоплавкие и легкоплавкие.
Гидрофизические свойства
Последствия воздействия на материал воды или морозов во многом зависят от степени его плотности и пористости, которые влияют на уровень водопоглощения, водопроницаемости, морозостойкости, теплопроводности и др.
Водопоглощением называется способность вещества впитывать и удерживать в себе влагу. Высокий уровень пористости при этом играет важную роль.
Влагоотдача является свойством, противоположным водопоглощению, то есть характеризует материал со стороны отдачи влаги в окружающую его среду. Эта величина играет важную роль в обработке некоторых веществ, например, строительных, которые в процессе возведения имеют высокую влажность. Благодаря влагоотдаче они высыхают до тех пор, пока их влажность не сравняется с окружающей средой.
Гигроскопичность – это свойство предусматривающее поглощение объектом водяных паров извне. Например, древесина способна поглощать много влаги, в результате чего растет ее масса, снижается уровень прочности и меняется размер.
Усушка или усадка – это гидрофизическое свойство материалов, которое предусматривает уменьшение его объемов и размера в процессе высыхания.
Водостойкостью называется способность вещества сохранять свою прочность в результате увлажнения.
Морозостойкостью является способность материала, насыщенного водой, многократно выдерживать заморозку и оттаивание без снижения уровня прочности и разрушения.
Строение механического слитка
Форма растущих кристаллов определяется:
- условиями их касания друг с другом;
- составом сплава;
- наличием примесей;
- режимом охлаждения.
Механизм образования кристаллов носит дендритный (древовидный) характер. Дендритная кристаллизация характеризуется тем, что рост зародышей происходит с неравномерной скоростью. После образования зародышей их развитие идет в тех плоскостях и направлениях решетки, которые имеют наибольшую плотность упаковки атомов и минимальное расстояние между ними. В этих направлениях образуются длинные ветви будущего кристалла — оси первого порядка. От осей первого порядка начинают расти новые оси — второго порядка, от осей второго порядка — оси третьего порядка и т.д.
Стальные слитки получают охлаждением в металлических формах (изложницах) или на установках непрерывной разливки. В изложнице сталь не может затвердеть одновременно во всем объеме, так как невозможно создать равномерную скорость отвода тепла. Поэтому процесс кристаллизации стали начинается у холодных стенок и дна изложницы и распространяется внутрь жидкого металла. При соприкосновении жидкого металла со стенками изложницы в начальный момент образуется зона мелких равноосных кристаллов. Поскольку объем твердого металла меньше жидкого, между стенкой изложницы и застывшим металлом образуется воздушная прослойка и сама стенка нагревается от соприкосновения с металлом, поэтому скорость охлаждения металла снижается, и кристаллы растут в направлении отвода теплоты. При этом образуется зона, состоящая из древовидных (столбчатых) кристаллов.
Во внутренней зоне слитка в результате замедленного охлаждения образуются равноосные, неориентированные кристаллы больших размеров. В верхней части слитка, которая затвердевает в последнюю очередь, образуется усадочная раковина, так как при охлаждении объем металла уменьшается. Под усадочной раковиной металл получается рыхлым из-за большого количества усадочных пор.
Для получения изделий используют только часть слитка, удаляя усадочную раковину и рыхлый металл слитка для последующего переплава.
Классификация стройматериалов
По способу получения все строительные материалы делят на:
- природные;
- искусственные.
По своему происхождению они бывают:
- каменные;
- лесные;
- металлические;
- стеклянные;
- полимерные и т. д.
В общем и целом условно можно выделить девять групп строительных материалов:
- Материалы для возведения фундамента и стен (бетон, кирпич, брус, бут и другие).
- Материалы для кровли (черепица, шифер, листовая сталь, рубероид).
- Отделочные материалы (гипсокартон, грунтовки, штукатурные смеси).
- Декоративные материалы (бумажные обои, паркет, ламинат, панели из искусственного камня).
- Материалы для монтажа (гвозди, шурупы, скобы, дюбеля).
- Строительные растворы (цемент, известь, клеевые смеси, акустические растворы).
- Полимерные материалы (пластик, полиэтилен, полистирол, поликарбонат).
- Изоляционные материалы (опилки, стружка, пеностекло, минеральная вата).
- Материалы для дорожного строительства (асфальт, асфальтобетон, битумы, брусчатка).
Основные виды сплавов
Самые многочисленные виды сплавов металлов изготавливаются на основе железа. Это стали, чугуны и ферриты.
Сталь — это вещество на основе железа, содержащее не более 2,4% углерода, применяется для изготовления деталей и корпусов промышленных установок и бытовой техники, водного, наземного и воздушного транспорта, инструментов и приспособлений. Стали отличаются широчайшим диапазоном свойств. Общие из них — прочность и упругость. Индивидуальные характеристики отдельных марок стали определяются составом легирующих присадок, вводимых при выплавке. В качестве присадок используется половина таблицы Менделеева, как металлы , так и неметаллы. Самые распространенные из них — хром, ванадий, никель, бор, марганец, фосфор.
Легированная сталь
Если содержание углерода более 2,4% , такое вещество называют чугуном. Чугуны более хрупкие, чем сталь. Они применяются там, где нужно выдерживать большие статические нагрузки при малых динамических. Чугуны используются при производстве станин больших станков и технологического оборудования, оснований для рабочих столов, при отливке оград, решеток и предметов декора. В XIX и в начале XX века чугун широко применялся в строительных конструкциях. До наших дней в Англии сохранились мосты из чугуна.
Чугунные радиаторы
Вещества с большим содержанием углерода, имеющие выраженные магнитные свойства, называют ферритами. Они используются при производстве трансформаторов и катушек индуктивности.
Сплавы металлов на основе меди, содержащие от 5 до 45% цинка, принято называть латунями. Латунь мало подвержена коррозии и широко применяется как конструкционный материал в машиностроении.
Желтая латунь
Если вместо цинка к меди добавить олово, то получится бронза. Это, пожалуй, первый сплав, сознательно полученный нашими предками несколько тысячелетий назад. Бронза намного прочнее и олова, и меди и уступает по прочности только хорошо выкованной стали.
Вещества на основе свинца широко применяются для пайки проводов и труб, а также в электрохимических изделиях, прежде всего, батарейках и аккумуляторах.
Двухкомпонентные материалы на основе алюминия, в состав которых вводят кремний, магний или медь, отличаются малым удельным весом и высокой обрабатываемостью. Они используются в двигателестроении, аэрокосмической промышленности и производстве электрокомпонентов и бытовой техники.
Физические свойства металлов
Среди основных общих физических свойств металлов можно выделить:
- Плавление.
- Плотность.
- Теплопроводность.
- Тепловое расширение.
- Электропроводность.
Важным физическим параметром металла является его плотность или удельный вес. Что это такое? Плотность металла – это количество вещества, которое содержится в единице объема материала. Чем меньше плотность, тем металл более легкий. Легкими металлами являются: алюминий, магний, титан, олово. К тяжелым относятся такие металлы как хром, марганец, железо, кобальт, олово, вольфрам и т. д. (в целом их имеется более 40 видов).
Способность металла переходить из твердого состояния в жидкое, именуется плавлением. Разные металлы имеют разные температуры плавления.
Скорость, с которой в металле проводится тепло при нагревании, называется теплопроводностью металла. И по сравнению с другими материалами все металлы отличаются высокой теплопроводностью, говоря по-простому, они быстро нагреваются.
Помимо теплопроводности все металлы проводят электрический ток, правда, некоторые делают это лучше, а некоторые хуже (это зависит от строения кристаллической решетки того или иного металла). Способность металла проводить электрический ток называется электропроводностью. Металлы, обладающие отличной электропроводностью, это золото, алюминий и железо, именно поэтому их часто используют в электротехнической промышленности и приборостроении.
Основные сведения о сплавах металлов (основы общей технологии металлов)
Все металлы и сплавы металлов обладают определенными свойствами. Свойства металлов и сплавов разделяют на четыре группы: физические, химические, механические и технологические.
Физические свойства. К физическим свойствам металлов и сплавов относятся: плотность, температура плавления, теплопроводность, тепловое расширение, удельная теплоемкость, электропроводность и способность намагничиваться. Физические свойства некоторых металлов приведены в таблице:
Физические свойства металлов
Название металла | Удельный вес, г 1см3 | Температура плавления, °С | Коэффициент линейного расширения, α 10-6 | Удельная теплоемкость С, кал/г-град | Теплопроводность λ, Кал/см сек-град | Удельное электросопротивление при 20°,Ом мм/м |
Алюминий | 2,7 | 660 | 23,9 | 0,21 | 0,48 | 0,029 |
Ванадий | 6,0 | 1720 | 12,3 | 0,11 | — | — |
Вольфрам | 19,3 | 3377 | 45,0 | 0,34 | 0,38 | 0,053 |
Железо | 7,86 | 1539 | 11,9 | 0,11 | 0,14 | 0,10 |
Кобальт | 8,9 | 1480 | 12,7 | 0,10 | 0,16 | 0,097 |
Магний | 1,74 | 651 | 26,0 | 0,25 | 0,37 | 0,044 |
Марганец | 7,2 | 1260 | 23,0 | 0,12 | 0,05 | |
Медь | 8,92 | 1083 | 26,7 | 0,09 | 0,92 | 0,044 |
Молибден | 10,2 | 2622 | 5,2 | 0,065 | 0,35 | 0,054 |
Никель | 8,9 | 1455 | 13,7 | 0,11 | 0,14 | 0,070 |
Олово | 7,31 | 232 | 22,4 | 0,055 | 0,16 | 0,113 |
Свинец | 11,3 | 327 | 29,3 | 0,031 | 0,084 | 0,208 |
Титан | 4,5 | 1660 | 7,14 | 0,11 | 0,048 | |
Хром | 7,1 | 1800 | 8,4 | 0,111 | 0,131 | |
Цинк | 7,14 | 420 | 32,6 | 0,91 | 0,27 | 0,061 |
Плотность. Количество вещества, содержащееся в единице объема, называют плотностью. Плотность металла может изменяться в зависимости от способа его производства и характера обработки.
Температура плавления. Температуру, при которой металл полностью переходит из твердого состояния в жидкое, называют температурой плавления. Каждый металл или сплав имеет свою температуру плавления. Знание температуры плавления металлов помогает правильно вести тепловые процессы при термической обработке металлов.
Теплопроводность. Способность тел передавать тепло от более нагретых частиц к менее нагретым называют теплопроводностью. Теплопроводность металла определяется количеством теплоты, которое проходит по металлическому стержню сечением в 1см2, длиной 1см в течение 1сек. при разности температур в 1°С.
Тепловое расширение. Нагревание металла до определенной температуры вызывает его расширение.
Величину удлинения металла при нагревании легко определить, если известен коэффициент линейного расширения металла α. Коэффициент объемного расширения металла ß равен Зα.
Удельная теплоемкость. Количество тепла, которое необходимо для повышения температуры 1г вещества на 1°С, называют удельной теплоемкостью. Металлы по сравнению с другими веществами обладают меньшей теплоемкостью, поэтому их нагревают без больших затрат тепла.
Электропроводность. Способность металлов проводить электрический ток называют электропроводностью. Основной величиной, характеризующей электрические свойства металла, является удельное электросопротивление ρ, т. е. сопротивление, которое оказывает току проволока из данного металла длиной 1м и сечением 1мм2. Оно определяется в омах. Величину, обратную удельному электросопротивлению, называют электропроводностью.
Большинство металлов обладает высокой электропроводностью, например серебро, медь и алюминий. С повышением температуры электропроводность уменьшается, а с понижением увеличивается.
Магнитные свойства. Магнитные свойства металлов характеризуются следующими величинами: остаточной индукцией, коэрцетивной силой и магнитной проницаемостью.
Остаточной индукцией (Вr) называют магнитную индукцию, сохраняющуюся в образце после его намагничивания и снятия магнитного поля. Остаточную индукцию измеряют в гауссах.
Коэрцетивной силой (Нс) называют напряженность магнитного поля, которая должна быть приложена к образцу, чтобы свести к нулю остаточную индукцию, т. е. размагнитить образец. Коэрцетивную силу измеряют в эрстедах.
Магнитная проницаемость μ характеризует способность металла намагничиваться под определяется по формуле
μ=Вr/Hc.
Железо, никель, кобальт и гадолиний притягиваются к внешнему магнитному полю значительно сильнее, чем остальные металлы, и постоянно сохраняют способность намагничиваться. Эти металлы называются ферромагнитными (от латинского слова феррум — железо), а их магнитные свойства — ферромагнетизмом. При нагреве до температуры 768°С (температура Кюри) ферромагнетизм исчезает, и металл становится немагнитным.
Химические свойства. Химическими свойствами металлов и сплавов металлов называют свойства, определяющие их отношение к химическим воздействиям различных активных сред. Каждый металл или сплав металла обладает определенной способностью сопротивляться воздействию этих сред.
Химические воздействия среды проявляются в различных формах: железо ржавеет, бронза покрывается зеленым слоем окиси, сталь при нагреве в закалочных печах без защитной атмосферы окисляется, превращаясь в окалину, а в серной кислоте растворяется и т. д. Поэтому для практического использования металлов и сплавов необходимо знать их химические свойства. Эти свойства определяют по изменению веса испытуемых образцов за единицу времени на единицу поверхности. Например, сопротивление стали окалинообразованию (жаростойкость) устанавливают по увеличению веса образцов за 1 час на 1 дм поверхности в граммах (привес получается за счет образования окислов).
Механические свойства. Механические свойства определяют работоспособность сплавов металлов при воздействии на них внешних сил. К ним относятся прочность, твердость, упругость, пластичность, ударная вязкость и др.
Для определения механических свойств сплавов металлов их подвергают различным испытаниям.
Испытание на растяжение (разрыв). Это основной способ испытания, применяемый для определения предела пропорциональности σпц, предела текучести σs, предела прочности σb относительного удлинения σ и относительного сужения ψ.
Для испытания на растяжение изготовляют специальные образцы- цилиндрические и плоские. Они могут быть различных размеров, в зависимости от типа разрывной машины, на которой испытывают металл на растяжение.
Разрывная машина работает следующим образом: испытуемый образец закрепляют в зажимах головок и постепенно растягивают с возрастающей силой Р до разрыва.
В начале испытания при небольших нагрузках образец деформируется упруго, удлинение его пропорционально возрастанию нагрузки. Зависимость удлинения образца от приложенной нагрузки называют законом пропорциональности.
Наибольшую нагрузку, которую может выдержать образец без отклонения от закона пропорциональности, называют пределом пропорциональности:
σпц=Рр/Fo,
где Рр -нагрузка в точке Рр, кгс;
Fо — начальная площадь поперечного сечения образца, мм2.
При увеличении нагрузки кривая отклоняется в сторону, т. е. закон пропорциональности нарушается. До точки Ррдеформация образца была упругой. Деформация называется упругой, если она полностью исчезает после разгрузки образца. Практически предел упругости для стали принимают равным пределу пропорциональности.
С дальнейшим увеличением нагрузки (выше точки Ре) кривая начинает значительно отклоняться. Наименьшую нагрузку, при которой образец деформируется без заметного увеличения нагрузки, называют пределом текучести:
σs=Ps/Fo
где Р s — нагрузка в точке Ps, кгс;
Fo — начальная площадь поперечного сечения образца, мм2. После предела текучести нагрузка увеличивается до точки Ре, где она достигает своего максимума. Делением максимальной нагрузки на площадь поперечного сечения образца определяют предел прочности:
σb=Pb/Fo,
где Рв- нагрузка в точке Рь, кгс;
Fo — начальная площадь поперечного сечения образца, мм2. В точке Ркобразец разрывается. По изменению, образца после разрыва судят о пластичности металла, которая характеризуется относительным удлинением δ и сужением ψ.
Под относительным удлинением понимают отношение приращения длины образца после разрыва к его начальной длине, выраженное в процентах:
δ=l1-l0/l0·100%
где l1 — длина образца после разрыва, мм;
l0- начальная длина образца, мм.
Относительным сужением называется отношение уменьшения площади поперечного сечения образца после разрыва к его начальной площади поперечного сечения
φ=Fo-F1/F0·100%,
где Fo — начальная площадь сечения образца, мм2;
F1 — площадь поперечного сечения образца в месте разрыва (шейка), мм2.
Испытание на ползучесть. Ползучесть — это свойство сплавов металлов медленно и непрерывно пластически деформироваться при постоянной нагрузке и высоких температурах. Основной целью испытания на ползучесть является определение предела ползучести — величины напряжения, действующего продолжительное время при определенной температуре.
Для деталей, работающих длительное время при повышенных температурах, учитывают только скорость ползучести при установившемся процессе и задают граничные условия, например1°/о за 1000 час. или 1°/о за 10 000 час.
Испытание на ударную вязкость. Способность металлов, оказывать сопротивление действию ударных нагрузок называют ударной вязкостью. Испытанию на ударную вязкость в основном подвергают конструкционные стали, так как они должны иметь не только высокие показатели статической прочности, но и высокую ударную вязкость.
Для испытания берут образец стандартной формы и размеров. Образец надрезают посередине, чтобы он в процессе испытания переломился в этом месте.
Образец испытывают следующим образом. На опоры маятникового копра кладут испытуемый образец надрезом к станин. Маятник весом G поднимают на высоту h1. При падении с этой высоты маятник острием ножа разрушает образец, после чего поднимается на высоту h2.
По весу маятника и высоте его подъема до и после разрушения образца определяют затраченную работу А.
Зная работу разрушения образца, вычисляем ударную вязкость:
αк=А/F
где А — работа, затраченная на разрушение образца, кгсм;
F — площадь поперечного сечения образца в месте надреза,см2.
Способ Бринелля. Сущность этого способа заключается в том, что, используя механический пресс, в испытуемый металл под определенной нагрузкой вдавливают стальной закаленный шарик и по диаметру полученного отпечатка определяют твердост.
Способ Роквелла. Для определения твердости по способу Роквелла применяют алмазный конус с углом при вершине 120°, или стальной шарик диаметром 1,58мм. При этом способе измеряют не диаметр отпечатка, а глубину вдавливания алмазного конуса или стального шарика. Твердость указывается стрелкой индикатора сразу после окончания испытания. При испытании закаленных деталей с высокой твердостью применяют алмазный конус и груз в 150 кгс. Твердость в этом случае отсчитывают по шкале С и обозначают HRC. Если при испытании берется стальной шарик и груз в 100 кгс, то твердость отсчитывают по шкале В и обозначают HRB. При испытании очень твердых материалов или тонких изделий используют алмазный конус и груз в 60 кгс. Твердость при этом отсчитывают по шкале А и обозначают HRA.
Детали для определения твердости на приборе Роквелла должны быть хорошо зачищенными и не иметь глубоких рисок. Способ Роквелла позволяет точно и быстро производить испытание металлов.
Способ Викерса. При определении твердости по способу Викерса в качестве наконечника, вдавливаемого в материал, применяют четырехгранную алмазную пирамиду с углом междугранями 136°. Полученный отпечаток измеряют при помощи микроскопа, имеющегося в приборе. Затем по таблице находят число твердости HV. При измерении твердости применяют одну из следующих нагрузок: 5, 10, 20, 30, 50, 100 кгс. Небольшие нагрузки позволяют определять твердость тонких изделий и поверхностных слоев азотируемых и цианируемых деталей. Прибор Викерса обычно используют в лабораториях.
Способ определения микротвердости. Этим способом измеряют твердость очень тонких поверхностных слоев и некоторых структурных составляющих сплавов металлов.
Микротвердость определяют по прибору ПМТ-3, который состоит из механизма для вдавливания алмазной пирамиды под нагрузкой 0,005-0,5 кгс и металлографического микроскопа. В результате испытания определяют длину диагонали полученного отпечатка, после чего по таблице находят значение твердости. В качестве образцов для определения микротвердости применяют микрошлифы с полированной поверхностью.
Способ упругой отдачи. Для определения твердости способом упругой отдачи применяют прибор Шора, работающий следующим образом. На хорошо зачищенную поверхность испытуемой детали с высоты Н падает боек, снабженный алмазным наконечником. Ударившись о поверхность детали, боек поднимается на высоту h. По высоте отскакивания бойка отсчитывают числа твердости. Чем тверже испытуемый металл, тем больше высота отскакивания бойка, и наоборот. Прибор Шора используют в основном для проверки твердости больших коленчатых валов, головок шатуна, цилиндров и других крупных деталей, твердость которых трудно измерять на других приборах. Прибор Шора позволяет проверять шлифованные детали без нарушения качества поверхности, однако получаемые результаты проверки не всегда точны.
Переводная таблица твердости
Диаметр отпечатка (м м) по Бринеллю, диаметр шарика 10 мм, нагрузка 3000 кгс | Число твердости по | ||||||
Бринеллю НВ | Роквеллу шкалы | Викерсу HV | Шору HSh | ||||
HRC | HRB | HRA | |||||
2,20 | 780 | 72 | — | 84 | 1224 | 106 | |
2,25 | 745 | 70 | — | 83 | 1116 | 102 | |
2,30 | 712 | 68 | — | 82 | 1022 | 98 | |
2,35 | 682 | 66 | — | 81 | 941 | 94 | |
2,40 | 653 | 64 | — | 80 | 868 | 91 | |
2.45 2,45 | 627 | 62 | — | 79 | 804 | 87 | |
2,50 | 601 | 60 | — | 78 | 746 | 84 | |
2,55 | 578 | 58 | .- | 78 | 694 | 81 | |
2,60 | 555 | 56 | — | 77 | 650 | 78 | |
2,65 | 534 | 54 | — | 76 | 606 | 76 | |
2,70 | 514 | 52 | — | 75 | 587 | 73 | |
2,75 | 495 | 50. | — | 74 | 551 | 71 | |
2,80 | 477 | 49 | 74 | 534 | 68 | ||
2,85 | 461 | 48 | — | 73 | 502 | 66. | |
2,90 | 444 | 46 | — | 73 | 474 | 64 | |
2,95 | 429 | 45 | — | 72 | 460 | 62 | |
3,00 | 415 | 43 | — | 72 | 435 | 61 | |
3,05 | 401 | 42 | — | 71 | 423 | 59′ | |
3,10 | 388 | 41 | _______ | 71 | 401 | 57 | |
3,15 | 375 | 40 | 70 | 390 | 56 | ||
3,20 | 363 | 39 | 70 | 380 | 54 | ||
3,25 | 352 | 38 | 69 | 361 | 53 | ||
3,30 | 341 | 36 | 68 | 344 | 51 | ||
3,35 | 331. | 35 | 67 | 334 | 50 | ||
3,40 | 321 | 33 | 67 | 320 | 49 | ||
3,45 | 311 | 32 | 66 | 311 | 47 | ||
3,50 | 302 | 31 | 66 | 303 | 46 | ||
3,55 | 293 | 30 | 65 | 292 | 45 | ||
3,60 | 285 | 29 | 65 | 285 | 44 | ||
3,65 | 277 | 28 | 64 | 278 | 43 | ||
3,70 | 269 | 27 | 64 | 270 | 42 | ||
3,75 | 262 | 26 | 63 | 261 | 41 | ||
3,80 | 255 | 25 | . | 63 | 255 | 40 | |
3,85 | 248 | 24 | 62 | 249 | 39 | ||
3.90 | 241 | 23 | 102 | 62 | 240 | 38 | |
3,95 | 235 | 21 | 101 | 61 | 235′ | 37 | |
4,00 | 229 » | 20 | 100 | 61 | 228 | 36. | |
4,05 | 223 | 19 | 99 | 60 | 222 | 35 | |
4,10 | 217 | 17 | 98 | 60 | 217 | 34 | |
4,15 | 212 | 15 | 97 | 59 | 213 | 34 | |
4,20 | 207 | 14 | 95 | 59 | 208 | 33 | |
4,25 | 201 | 13 | 94 | 58 | 201 | 32 | |
4,30 | 197 | 12 | 93 | 58 | 197 | 31 | |
4,35 | 192 | 11 | 92 | 57 | 192 | 30 | |
4,40 | 187 | 9 | 91 | 57 | 186 | 30 | |
4,45 | 6 | 183 | |||||
4,50 | 179 | 7 | 90 | 56 | 178 | 29 | |
4,55 | 174 | 6 | 89 | 55 | 174 | 28 | |
4,60 | 170 | 4 | 88 | 55 | 171 | 28 | |
4,65 | 167 | 3 | 87 | 54 | 166 | 27 | |
4,70 | 163 | 2 | 86 | 53 | 150 | 26 | |
4,75 | 159 | 1 | 85 | 53 | 159 | 26 | |
4,80 | 156 | 0 | 84 | 52 | 155 | 26 | |
4,85 | 152 | 83 | 152 | 25 | |||
4,90 | 149 | 82 | 149 | 24 | |||
4.95 | 146 | 81 | 148 | 24 | |||
5,00 | 143 | 80 | 143 | 24 |
Способ царапания. Этот способ, отличие от описанных, характеризуется тем, что при испытании происходит не только упругая и пластическая деформация испытуемого материала, но и его разрушение.
В настоящее время для проверки твердости и качества термической обработки стальных заготовок и готовых деталей без разрушения применяют прибор — индуктивный дефектоскоп ДИ-4. Этот прибор работает на вихревых токах, возбуждаемых переменным электромагнитным полем, которое создается датчиками в контролируемых деталях и эталоне.
Теория сплавов
Металлическим сплавом называется материал, полученный сплавлением двух или более металлов или металлов с неметаллами, обладающий металлическими свойствами. Вещества, которые образуют сплав называются компонентами.
Фазой называют однородную часть сплава, характеризующуюся определенными составом и строением и отделенную от других частей сплава поверхностью раздела. Под структурой понимают форму размер и характер взаимного расположения фаз в металлах и сплавах. Структурными составляющими называют обособленные части сплава, имеющие одинаковое строение с присущими им характерными особенностями.
Виды сплавов по структуре. По характеру взаимодействия компонентов все сплавы подразделяются на три основных типа: механические смеси, химические соединения и твердые растворы.
Механическая смесь двух компонентов А и В образуется, если они не способны к взаимодействию или взаимному растворению. Каждый компонент при этом кристаллизуется в свою кристаллическую решетку. Структура механических смесей неоднородная, состоящая из отдельных зерен компонента А и компонента В. Свойства механических смесей зависят от количественного соотношения компонентов: чем больше в сплаве данного компонента, тем ближе к его свойствам свойства смеси.
Химическое соединение образуется когда компоненты сплава А и В вступают в химическое взаимодействие. При этом при этом соотношение чисел атомов в соединении соответствует его химической формуле АmВn . Химическое соединение имеет свою кристаллическую решетку, которая отличается от кристаллических решеток компонентов. Химические соединения имеют однородную структуру, состоящую из одинаковых по составу и свойствам зерен.
При образовании твердого раствора атомы одного компонента входят в кристаллическую решетку другого. Твердые растворы замещения образуются в результате частичного замещения атомов кристаллической решетки одного компонента атомами второго (рис. 6, б).
Твердые растворы внедрения образуются когда атомы растворенного компонента внедряются в кристаллическую решетку компонента -растворителя (рис. 6, в). Твердый раствор имеет однородную структуру, одну кристаллическую решетку. В отличие от химического соединения твердый раствор существует не при строго определенном соотношении компонентов, а в интервале концентраций. Обозначают твердые растворы строчными буквами греческого алфавита: α, β, γ, δ и т. д.
Химические свойства
Химические свойства характеризуют способность металлов и сплавов сопротивляться окислению или вступать в соединение с различными веществами: кислородом воздуха, растворами кислот, щелочей и др. Чем легче металл вступает в соединение с другими элементами, тем быстрее он разрушается. Химическое разрушение металлов под действием на их поверхность внешней агрессивной среды называют коррозией.
Металлы, стойкие к окислению при сильном нагреве, называют жаростойкими или окалиностойкими. Такие металлы применяют для изготовления деталей, которые эксплуатируются в зоне высоких температур.
Сопротивление металлов коррозии, окалинообразованию и растворению определяют по изменению массы испытуемых образцов на единицу поверхности за единицу времени.
Химические свойства металлов обязательно учитываются при изготовлении тех или иных изделий. Особенно это относится к изделиям или деталям, работающим в химически агрессивных средах.