Понятие о металлургии
Металлургия — получение металлов из руд — один из древнейших видов человеческой деятельности. Еще во втором тысячелетии до н. э. в Египте умели выплавлять железо из железной руды. Так называемый железный век пришел на смену бронзовому, тот, в свою очередь, наступил после каменного.
Получают металлы из рудных полезных ископаемых. Например, халькопирит или медный колчедан — сырье для производства железа, меди и серы (Рис. 1). Химическая формула минерала CuFeS2. Металлы в составе других руд находятся в виде оксидов или солей неорганических кислот, химически связанных катионов.
Рис. 1. Халькопирит
Суть металлургического процесса заключается в восстановлении положительных ионов до свободных атомов металла. Используют в качестве источников электронов углерод и его соединения, водород, металлы. В процессе восстановления катионы получают недостающие электроны. Происходит восстановление электронных оболочек металла. Схема процесса:
Ме+n + ne- → Me, где
- Ме+n — металл в окисленной форме;
- +n — степень окисления;
- ne- — количество присоединяемых электронов;
- Ме — металл в восстановленной форме.
Улучшение свойств сплавов
Благодаря сплавлению некоторых металлов и других химических элементов можно получить материалы с улучшенными характеристиками. Так, например, предел текучести чистого алюминия составляет 35 МПа. При получении сплава этого металла с медью (1,6%), цинком (5,6%), магнием (2,5%) этот показатель превышает 500 МПа.
Благодаря соединению в разных соотношениях различных химических веществ можно получить металлические материалы с улучшенными магнитными, термическими или электрическими свойствами. Главную роль в этом процессе играет структура сплава, представляющая собой распределение его кристаллов и тип связей между атомами.
Способы получения металлов
В зависимости от того, кокой восстановитель используют в металлургическом процессе различают: пиро — , гидро, электро — и биометаллургию.
Наиболее распространенные способы получения металлов: пирометаллургический и электрометаллургический. Большинство реакций восстановления протекают при высоких температурах (Рис. 2). Так как металлическая связь обладает повышенной прочностью, то выделение металлов в чистом виде из природных соединений проводят при высоких температурах.
Рис. 2. Металлургическое производство
Пирометаллургический способ
Пирометаллургия — получение металлов из руд при высоких температурах при участии восстановителей. В переводе с греческого «пирос» означает «огненный». Используют в качестве восстановителей кокс, диоксид углерода, водород. Применяют активные металлы для получения менее активных.
Пирометаллургия подразделяется на
- карботермия,
- водородотермия,
- металлотермию.
Карботермия: перевод сульфида металла путем обжига в оксид и дальнейшим восстановлением углем до чистого состояния.
2ZnS + 3O2 = 2ZnO + 2 SO2
ZnO + C = CO + Zn
Руды, состоящие из оксидов и сульфидов железа, подвергают карботермии. Проводят восстановление коксом или диоксидом углерода (угарным газом). Получают сплавы железа — чугун и сталь. Первый содержит больше углерода, а также оксидов серы, фосфора и кремния. Углерод снижает твердость и другие характерные для металлов качества.
Химические реакции, лежащие в основе выплавки чугуна:
- C + O2 = CO2↑,
- CO2 + C ↔ 2CO↑,
- 3Fe2O3 + CO = 2Fe3O4+ CO2↑,
- Fe3O4 + CO = 3FeO + CO2↑,
- FeO + CO = Fe + CO2↑.
Сталь выплавляют в специальных печах — электрических, конвертерных, мартеновских (Рис. 3). При продувании обогащенного кислородом воздуха выгорает избыточный углерод, его содержание уменьшается до 2% и ниже. Этот способ является более экономически применим, т.к. при помощи него получают сталь и чугун, которые широко используются в современной промышленности.
Рис. 3. Пирометаллургия
Восстановлением углем можно получить железо, медь, цинк, кадмий, германий, олово, свинец и другие металлы. В качестве сырья используют медную (Cu2O), оловянную (SnO2), марганцевую (MnO2) руды.
Схема получение железа и хрома | (Cr2Fe)O4 + 4C(кокс) = Fe + 2Cr + 4CO↑ |
Реакция, лежащая в основе выплавки меди | Cu2O + C (кокс) = 2Cu + CO↑ |
Схема производство олова | SnO2 + 2C (кокс) = Sn + 2CO↑ |
Процесс выплавки марганца | MnO2 + C(кокс) = Mn + CO2↑ |
Схема получения свинца | 2PbO + C → Pb + CO↑ |
Металлы можно извлечь из сульфидных руд. Сначала проводят обжиг, затем — восстановление полученного оксида углем. Схемы обжига цинковой обманки и получение цинка:
- 2ZnS +3O2 = 2ZnO + 2SO2↑;
- ZnO + C = Zn + CO↑.
Карбонаты тоже прокаливают с углем для получения оксидов и последующего восстановления углем. Схемы обжига сидерита и восстановления оксида железа:
- FeCO3 = FeO + CO2↑;
- FeO + C = Fe + CO↑.
Водородотермия — производство металлов восстановлением водородом
Достоинством этого металлургического метода является получение очень чистых металлов. Восстановление меди из оксида CuO — пример восстановительных свойств водорода из школьного курса неорганической химии. Схема протекания реакции (Рис 4):
Рис. 4. Восстановление меди водородом
Водородом восстанавливают из оксидов тугоплавкие металлы молибден и вольфрам.
Металлотермия
Проводят восстановление одного металла другим, более химически активным. Этот способ применяют для получения металлов из оксидов и галогенидов.
В зависимости от природы металла-восстановителя различают алюминотермию, или алюмотермию, — восстановление алюминием и магнийтермию — восстановление магнием.
Схема получение марганца | 3MnO2 + 4Al = 3Mn + 2Al2O3 |
Процесс выплавки хрома | Cr2O3 + 2Al → 2Cr + Al2O3 |
Схема получение кальция | 4CaO+ 2Al= 2Ca+ (CaAl2)O4 |
Силикотермия — восстановление металлов кремнием. Процесс протекает согласно схеме: 2MgO + Si → 2Mg + SiO2.
Пирометаллургия
Пи́рометаллу́ргия
— совокупность металлургических процессов, протекающих при высоких температурах. Это отрасль металлургии, связанная с получением и очищением металлов и металлических сплавов при высоких температурах, в отличие от гидрометаллургии, к которой относятся низкотемпературные процессы.
Описание[ | ]
Это химические процессы, протекающие в металлургических агрегатах при высоких (800—2000°С) температурах. Поэтому пирометаллургию иногда называют «химией высоких температур».
Часто химические реакции сопровождаются изменением агрегатного состояния реагирующих веществ: плавлением, возгонкой, испарением образующихся металлов или их соединений.
В таких процессах взаимодействия могут протекать между твёрдой, жидкой (расплавы) и газообразной фазами в любых сочетаниях.
Пирометаллургическими процессами являются процессы агломерации металлургического сырья, плавки шихтовых материалов, изготовления сплавов, рафинирования металлов. В частности, это — обжиг, доменная плавка, , плавка в конвертерах, дуговых и индукционных печах.Пирометаллургия — основа производства чугуна, стали, свинца, меди, цинка и др.
В пирометаллургии часто применяется восстановление углеродом — в тех случаях, когда восстанавливаемые металлы не образуют устойчивых карбидов, помимо указанных выше, к таким металлам относятся германий, кадмий, олово и другие. В случаях образования восстанавливаемыми металлами устойчивых карбидов вместо восстановления углеродом часто применяется металлотермия[1].
Пирометаллургия — основная и наиболее древняя область металлургии. С давних времён до конца 19 столетия производство металлов базировалось почти исключительно на пирометаллургических процессах.
На рубеже 19 и 20 столетий промышленное значение приобрела другая крупная ветвь металлургии — гидрометаллургия.
Однако пирометаллургия продолжает сохранять господствующее положение как по масштабам производства, так и по разнообразию процессов.
В начале 20 столетия вместе с пламенными способами нагрева в металлургии начали использоваться разные виды электрического нагрева (дуговой, индукционный и др.); приблизительно в это же время в промышленности был внедрён электролиз расплавленных химических соединений (производство алюминия и других цветных металлов).
Во 2-й половине 20 столетия получили распространение плазменная плавка металлов, зонная плавка и . Металлургические процессы, основанные на использовании электрического тока, выделяют в самостоятельную область пирометаллургии — электрометаллургию.
Основные процессы[ | ]
Основным процессом пирометаллургии является рудная плавка, которая проводится при таких высоких температурах, когда продукты химического взаимодействия расплавляются, образуя две жидкие фазы — металлическую или сульфидную и шлаковую. Различают восстановительную и окислительную плавки.
Определяющий процесс восстановительной рудной плавки — это восстановление оксидов металла с получением в конечном итоге расплава металла или его сплава с другими элементами. Типичной восстановительной плавкой является получение чугуна в доменных печах. Восстановительные процессы являются также главными при плавке марганцевых, окисленных никелевых, свинцовых, титановых руд.
Основными реагментами-восстановителями служат углерод, оксид углерода и водород. Оксид углерода образуется в самой печи при неполном горении углерода; основное количество водорода получается в результате разложения вдуваемого в печь природного газа.
Разновидностью восстановительных плавок является металлотермическое получение металлов, при котором в качестве восстановителя какого-то металла (Mn, Cr, V и др.) используется другой металл — с большим сродством к кислороду: Ca; Mg; Al, а также Si. Одним из достоинств металлотермического восстановления является получение металлов, не загрязненных углеродом или водородом.
Типичной окислительном рудной плавкой является переработка в шахтных печах богатых медных сульфидных руд. В ходе плавки окисляется основная доля серы сульфидных минералов, в результате чего выделяется значительное количество тепла. Основным целевым продуктом плавки является расплав сульфидов FeS и Cu2S — штейн.
Чугун и штейн рудных плавок являются, по-существу, полупродуктами, которые требуют дополнительной обработки. Такая обработка заключается в продувке расплавов воздухом или чистым кислородом, в результате чего содержащиеся в сплавах примеси окисляются и переходят либо в шлак (SiO2; MnO; FeO и др.), либо в газ (СО; SO2). Процесс называется конвертированием.
Аналогичным конвертированию является фьюминг-процесс — продувка газом шлаковых расплавов. Отличие его от конвертирования состоит в том, что металлический расплав продувают окислительным газом, а при фьюминговании шлака восстановительным.
А во-вторых, продукты окисления металлического расплава — оксиды металлов — образуют вторую жидкую фазу — шлак, а продукты фьюмингования шлака — восстановленные легколетучие металлы (или сульфиды) в парообразном состоянии удаляются из реакционного пространства газовым потоком[2].
Литература[ | ]
Гидрометаллургический способ
Гидрометаллургия — способ получения благородных, цветных, редких металлов. Например, оксид меди сначала переводят в сульфат с помощью серной кислоты. Медь вытесняют из раствора железом. Протекает следующая реакция замещения: CuSO4 + Fe = Cu + FeSO4. Либо медь извлекают из раствора электролизом. Пропускают электрический ток, ионы Cu2+ осаждаются на катоде.
Преимущество гидрометаллургического способа — возможность получать металлы из бедных руд. Еще один плюс метода — снижение газообразных выбросов в атмосферу. Большое количество вредных газов и сажи поступает в воздух при обжиге руды и пирометаллургии.
Свойства сплавов
Вне зависимости от того, какие способы получения металлов и сплавов используются, их свойства полностью определяются кристаллической структурой фаз и микроструктурой этих материалов. У каждого из них они разные. Макроскопические свойства сплавов зависят от их микроструктуры. Они в любых случаях отличаются от характеристик их фаз, зависящих исключительно от кристаллической структуры материала. Макроскопическая однородность гетерогенных (многофазных) сплавов получается в результате равномерного распределения фаз в матрице металла.
Важнейшим свойством сплавов считается свариваемость. В остальном они идентичны металлам. Так, сплавы обладают тепло- и электропроводностью, пластичностью и отражательной способностью (блеском).
Часть 2. Оксиды, получение и свойства. Получение оксидов:
Способы получения. | Примеры. | Ограничения и примечания |
1. Окисление простых веществ: | а) металлов: 2Ca + O2 2CaO б) неметаллов: 4P + 3O2 (нед) 2P2O 3 4P + 5O2 (изб) 2P2O5 (Из S – SO2, из Fe – Fe2O3 и Fe3O4, из N2 – NO) | С кислородом не реагируют галогены, инертные газы, Au, Pt. Азот реагирует в жестких условиях (2000°C). |
2. Окисление сложных веществ: | а) водородных соединений: 2Н2S + 3O 2 2H2O + 2SO 2 б) сульфидов, карбидов, фосфидов (бинарных соединений): 2ZnS + 3O2 2ZnO + 2SO2 | Каждый элемент сложного вещества окисляется в соответствии со своими свойствами. |
3. Разложение гидроксидов и солей: | а) гидроксидов (оснований и кислот):2Al(OH)3→t Al2O3 + 3H2O H2SiO3 →t SiO2 + H2O б) карбонатов: СаСО3→t CaO+CO2 | Гидроксиды и карбонаты щелочных металлов (Na,K, Rb,Cs) не разлагаются. |
4. Окисление кислородом или озоном | а) кислородом: 2СО + О2 2СО2 б) озоном: NO + O3 NO2 + O2 | Возможна, если элемент имеет несколько оксидов (сера, фосфор, углерод, азот, железо). |
Свойства оксидов.
Основные оксиды
– оксиды, которым соответствуют основания. Это оксиды металлов со степенями окисления +1 и +2, кроме амфотерных (ZnO, BeO, SnO, PbO)
Свойства основных оксидов.
Свойства | Примеры реакций | Ограничения и примечания |
1) Реакция с растворами кислот | Li2O + 2HCl= 2LiCl+ H2O NiO + H2SO4 = NiSO4 + H2O | Кислота должна существовать в виде раствора (не реагируют кремниевая, сероводородная, угольная) |
2) Реакция с водой | Li2O + H2O = 2LiOH BaO + H2O = Ba(OH)2 (только 8 оксидов: IA группа, СаО, SrO, ВаО) | Оксид реагирует с водой, только если в результате образуется растворимый гидроксид (щелочь). |
3) Реакция с кислотными и амфотерными оксидами | BaO + CO2 = BaCO3, FeO + SO3 = FeSO4, CuO + N2O5 = Cu(NO3) 2 СаО + SO2 = CaSO3 | Один из реагирующих оксидов (основный или кислотный) должен соответствовать сильному гидроксиду. |
4) Восстановление оксида до металла или до низшего оксида: | MnO + C = Mn + CO (при нагревании), FeO + H2 = Fe + H2O (при нагревании). Fe2O3 + CO = FeO + CO2 | В качестве восстановителей используют: СО, С, водород, алюминий, магний. С водородом реагируют оксиды неактивных металлов. |
5) Окисление кислородом. | 4FeO + O2 = 2Fe2O3 | Если металл имеет несколько оксидов с разными степенями окисления. |
Кислотные оксиды
– оксиды, которым соответствуют кислоты.
Кислотные оксиды при комнатной температуре бывают:
*газы
(например: СО2, SO2, NO, SeO2)
*жидкости
(например, SO3, Mn2O7)
*твердые
вещества (например: B2O3, SiO2, N2O5, P2O3, P2O5, I2O5, CrO3).
Свойства кислотных оксидов.
Свойства | Примеры реакций | Примечания |
1) Реакция с основа—ниями | CO2 + Ca(OH) 2 = CaCO3 + H2O SiO2 + 2KOH = K2SiO3 + H2O (при нагревании), SO3 + 2NaOH = Na2SO4 + H2O, N2O5 + 2KOH = 2KNO3 + H2O. | Реакция возможна со щелочами. Наиболее активные кислотные оксиды (SO3, CrO3, N2O5, Cl2O7) могут реагировать и с нерастворимыми (слабыми) основаниями. |
2) Реакция с амфотер-ными и основными оксидами | CO2 + CaO = CaCO3 P2O5 + 6FeO = 2Fe3(PO4)2 (при нагревании) N2O5 + ZnO = Zn(NO3)2 | Один из реагирующих оксидов (основный или кислотный) должен соответствовать сильному гидроксиду . |
3) Реакция с водой.Образуют—ся КИСЛОТЫ. | N2O3 + H2O = 2HNO2 SO2 + H2O = H2SO3 N2O5 + H2O = 2HNO3 SO3 + H2O = H2SO4 | Оксид реагирует с водой, если в результате образуется растворимый гидроксид. |
4) Реакции с солями летучих кислот. | SiO2 + K2CO3 = K2SiO3 + CO2 (при нагревании) | Твёрдые, нелетучие оксиды (SiO2,P2O5) вытесняют из солей летучие. |
5) Окисле—ние. | 2SO2 + O2 ⇆ 2SO3 | Низшие оксиды окисляются до высших. |
Амфотерные оксиды
– оксиды, способные реагировать и с кислотами, и со щелочами. По химическим свойствам амфотерные оксиды похожи на основные оксиды и отличаются от них только своей
способностью реагировать с щелочами
, как с твердыми (при сплавлении), так и с растворами,
а также с основными оксидами.
Вещества, образуемые катионами амфотерных металлов в щелочной среде:
Степень окисления | В растворе | В расплаве |
+2 (Zn, | Na 2[Zn(OH)4] тетрагидроксоцинкат натрия | Na2ZnO2 цинкат натрия |
+3 (Al, | Na[Al(OH)4] тетрагидроксоалюминат натрия Na3[Al(OH)6] гексагидроксоалюминат натрия | NaAlO2 метаалюминат натрия и Na3AlO3 ортоалюминат натрия |
*) железо не образует устойчивых гидроксокомплексов, амфотерно только в расплаве, образуя NaFeO2 |
СВОЙСТВА АМФОТЕРНЫХ ОКСИДОВ.
Cвойства | Примеры реакций | Примечания |
1) Реагируют с кислотами , так же, как основные оксиды – образуются соли. | ZnO + 2HCl = ZnCl2 + H2O Al2O3 + 6HNO3 = 2Al(NO3)3 +3H2O | Только с сильными кислотами |
2) Взаимодействуют с растворами щелочей – образуются растворы гидроксокомплексов. | Al2O3 + 2KOH +3H2O = 2K[Al(OH)4] или K3[Al(OH)6] ZnO +2NaOH +H2O=Na2[Zn(OH)4] | |
3) Реагируют с расплавами щелочей – образуя соли, при этом проявляют свойства кислотных оксидов. | Al2O3 + 2KOH →t 2KAlO2 + H2O (или K3AlO3) ZnO + 2KOH → t K2ZnO2 + H2O | |
4) При сплавлении могут взаимодействовать с карбонатами щелочных металлов , как со щелочами. | Al2O3 + Na2CO3 → t 2NaAlO2+CO2 (или Na3AlO3) ZnO + Na2CO3 → t Na2ZnO2+ CO2 |
studfiles.net
Стали и чугуны
Эти сплавы получаются путем соединения железа и углерода (2%). При производстве легированных материалов к ним добавляются никель, хром, ванадий. Все обычные стали подразделяют на виды:
• малоуглеродистая (0,25 % углерода) используется для изготовления различных конструкций;
• высокоуглеродистая (более 0,55%) предназначена для производства режущих инструментов.
Различные марки легированных сталей применяются в машиностроении и другой продукции.
Сплав железа с углеродом, процентное содержание которого составляет 2-4%, называется чугуном. В состав этого материала входит и кремний. Из чугуна отливают различные изделия, обладающие хорошими механическими свойствами.