Технология и основные методы катодной защиты от коррозии

Для металлических листов и деталей применяют разные технологии антикоррозийной защиты. Большое распространение получила катодная защита от коррозии. Этот способ обладает рядом характерных особенностей, а чаще всего катодную защиту применяют для крупных объектов. Это могут быть трубы, автомобили, металлические свайные конструкции, морские судна. Как именно происходит защита трубопроводов от коррозии на физическом и химическом уровне?

катодная защита от коррозии

Основные технологии катодной защиты

Катодная защита — это специальный метод электрохимической защиты металлических объектов от ржавления и коррозии. Главный принцип заключается в том, что на защищаемый металлический объект накладывается отрицательный потенциал электрического тока. Это позволяет минимизировать контакт металла с внешними ионами и веществами, обладающими электрическим зарядом. Технология была разработана примерно 200 лет назад британским ученым Гемфри Дэви. Для подтверждения своей теории он составил несколько докладов, которые были переданы правительству. На основании этих докладов было произведена первая в мире катодная защита крупного промышленного корабля.

Антикоррозийная защита распространяется на различные объекты — трубопроводы, автомобили, дороги, самолеты и так далее. Обратите внимание, что тип металла значения не имеет — это может быть железо, медь, серебро, золото, алюминий, титан и любой другой металл, а также различные сплавы (с лигирующими добавками или без них). Одинаково успешно может выполняться защита от коррозии автомобиля, отдельных фрагментов труб, различных декоративных изделий сложной формы и так далее.

1 способ

Подключение детали к внешнему источнику электрического тока (обычно эту роль выполняются компактные подстанции). В случае применения технологии металлический объект выполняет функцию катода, а электрическая подстанция — функцию анода. Благодаря этому происходит сдвиг электрического потенциала, что позволяет защитить металлический объект от электрически активных частиц. Основные сферы применение данной технологии — защита трубопроводов, сварных конструкций, различных платформ, элементов дорожного покрытия и так далее. Эта технология является достаточно простой и универсальной, поэтому в мире она пользуется высокой популярностью. Ее главный минус — необходимость подключения защитного контура к внешнему источнику тока, что может быть неудобно в случае объектов, которые располагаются вдали от человеческой цивилизации (частично эта проблема решается за счет применения автономных источников энергии).

технология катодной защиты

2 способ

Метод гальванической поляризации (технология гальванических анодов). Эта методика также является достаточно простой и интуитивно понятной: металлический объект присоединяется к другому, который обладает отрицательным зарядом (чаще всего этот элемент из легких металлов — из алюминия, цинка, магния). Технологию гальванической поляризации обычно применяют в тех случаях, когда на поверхности объекта есть защитный слой. Эта технология популярна в Америке, где есть большое количество малонаселенных пунктов и где наблюдается дефицит внешних источников энергии. Эксперты утверждают, что гальваническая поляризации могла бы стать очень популярной в России из-за особенностей нашей географии, если бы на отечественные трубопроводы наносилось защитное покрытие (при таком сценарии применение первой технологии было бы весьма затруднительно, что вынуждало бы людей искать альтернативу).

Электрохимическая защита трубопроводов от коррозии

Электрохимическая защита от коррозии состоит из катодной и дренажной защиты. Катодная защита трубопроводов осуществляется двумя основными методами: применением металлических анодов-протекторов (гальванический протекторный метод) и применением внешних источников постоянного тока, минус которых соединяется с трубой, а плюс — с анодным заземлением (электрический метод).


Рис. 1. Принцип работы катодной защиты

Гальваническая протекторная защита от коррозии

Наиболее очевидным способом осуществления электрохимической защиты металлического сооружения, имеющего непосредственный контакт с электролитической средой, является метод гальванической защиты, в основу которого положен тот факт, что различные металлы в электролите имеют различные электродные потенциалы. Таким образом, если образовать гальванопару из двух металлов и поместить их в электролит, то металл с более отрицательным потенциалом станет анодом-протектором и будет разрушаться, защищая металл с менее отрицательным потенциалом. Протекторы, по существу, служат портативными источниками электроэнергии.

В качестве основных материалов для изготовления протекторов используются магний, алюминий и цинк. Из сопоставления свойств магния, алюминия и цинка видно, что из рассматриваемых элементов магний обладает наибольшей электродвижущей силой. В то же время одной из наиболее важных практических характеристик протекторов является коэффициент полезного действия, показывающий долю массы протектора, использованной на получение полезной электрической энергии в цепи. К.П.Д. протекторов, изготовленных из магния и магниевых сплавов, редко превышают 50 % в, в отличие от протекторов на основе Zn и Al с К.П.Д. 90 % и более.

Рис. 2. Примеры магниевых протекторов

Обычно протекторные установки применяются для катодной защиты трубопроводов, не имеющих электрических контактов со смежными протяженными коммуникациями, отдельных участков трубопроводов, а также резервуаров, стальных защитных кожухов (патронов), подземных резервуаров и емкостей, стальных опор и свай, и других сосредоточенных объектов.

В то же время протекторные установки очень чувствительны к ошибкам в их размещении и комплектации. Неправильный выбор или размещение протекторных установок приводит к резкому снижению их эффективности.

Катодная защита от коррозии

Наиболее распространенный метод электрохимической защиты от коррозии подземных металлических сооружений — это катодная защита, осуществляемая путем катодной поляризации защищаемой металлической поверхности. На практике это реализуется путем подключения защищаемого трубопровода к отрицательному полюсу внешнего источника постоянного тока, называемого станцией катодной защиты. Положительный полюс источника соединяют кабелем с внешним дополнительным электродом, сделанным из металла, графита или проводящей резины. Этот внешний электрод размещается в той же коррозионной среде, что и защищаемый объект, в случае подземных промысловых трубопроводов, в почве. Таким образом, образуется замкнутая электрическая цепь: дополнительный внешний электрод — почвенный электролит — трубопровод — катодный кабель — источник постоянного тока — анодный кабель. В составе данной электрической цепи трубопровод является катодом, а дополнительный внешний электрод, присоединенный к положительному полюсу источника постоянного тока, становится анодом. Данный электрод называется анодным заземлением. Отрицательно заряженный полюс источника тока, присоединенный к трубопроводу, при наличии внешнего анодного заземления катодно поляризует трубопровод, при этом потенциал анодных и катодных участков практически выравнивается.

Таким образом, система катодной защиты состоит из защищаемого сооружения, источника постоянного тока (станции катодной защиты), анодного заземления, соединительных анодной и катодной линий, окружающей их электропроводной среды (почвы), а также элементов системы мониторинга — контрольно-измерительных пунктов.

Дренажная защита от коррозии

Дренажная защита трубопроводов от коррозии блуждающими токами осуществляется путем направленного отвода этих токов к источнику или в землю. Установка дренажной защиты может быть нескольких видов: земляной, прямой, поляризованный и усиленный дренажи.

Рис. 3. Станция дренажной защиты

Земляной дренаж осуществляется заземлением трубопроводов дополнительными электродами в местах их анодных зон, прямой дренаж — созданием электрической перемычки между трубопроводом и отрицательным полюсом источника блуждающих токов, например рельсовой сетью электрифицированной железной дороги. Поляризованный дренаж в отличие от прямого обладает только односторонней проводимостью, поэтому при появлении положительного потенциала на рельсах дренаж автоматически отключается. В усиленном дренаже дополнительно в цепь включается преобразователь тока, позволяющий увеличивать дренажный ток.

P.S. Обзор технических решений по ЭХЗ других металлических конструкций и сооружений можно прочитать здесь.

Хотите узнать больше о коррозии металлических конструкций и методах противокоррозионной защиты?

Скачайте наше специализированное учебно-справочное приложение «Защита от коррозии»

Технология катодной поляризации

В данном случае используется так называемый наложенный ток. Для его подачи на металлический объект используется внешний проводник (часто) или источник тока (редко). При контакте с электрически активной частицей происходит следующее — частица под действием сил электрического притяжения перемещается к защитному элементу с отрицательным зарядом, где происходит «утилизация» этих частиц.

Последствия такой «утилизации» очевидны — защитный элемент со временем сам покрывается коррозией и приходит в негодность. Поэтому данную технологию очень часто называют методом жертвенного электрода (вместо нашей детали происходит ржавление «электрода-жертвы»).

Помимо силы тока и напряжения при работе с катодной поляризацией нужно учитывать еще один важный параметр — это омическое напряжение. В техническом смысле этот параметр отражает тот факт, что по мере протекания электрического заряда со временем напряжение тока в контуре падает. Само падение происходит из-за того, что протекание катодного тока происходит по контуру с более низким зарядом. В случае правильной сборки контура этот показатель является достаточно маленьким — благодаря этому в контуре будет всегда сохраняться один и тот же ток одинаковой мощности.

станция катодной защиты

Катодная защита газопроводов от коррозии

Данный метод состоит в том, чтобы соединить позитивный полюс генератора постоянного тока с проводником анода-заземлителя. Из него токи попадают в почву, поступая через поврежденные участки изоляции в трубопровод. По трубе они направляются к месту подсоединения проводника, далее – к отрицательному рубежу источника.
Если имеется достаточный уровень напряжения, вся рабочая часть газопровода становится отрицательно-катодной. Это дает возможность предупредить образование активной коррозии. При этом анодным участком становится заземление (бросовый металл). В результате труба по отношению к грунту потенцируется отрицательно.

Технология создания станций защиты

Еще одной технологией создания катодной защиты является подключение элемента к внешним источникам тока. В большинстве случаев для этих целей сооружаются специальные станции катодной защиты (СКЗ), которые состоят из нескольких элементов — главный источник тока, анодное заземление, различные кабели и провода, соединяющие отдельные элементы конструкции и вспомогательные пункты с механическим или компьютерным управлением, которые позволяют контролировать параметры.

Чаще всего данная технология используется для объектов, расположенных рядом с проводами электропередач — это могут быть трубопроводы, различные фабричные постройки и так далее. СКЗ могут работать во многопоточном режиме — в таком случае они будут обслуживать сразу несколько защитных систем. На трубах большое распространение получила практика, при которой на трубы ставится несколько отдельных блоков для более эффективного распределения тока. Дело все в том, что в случае протяженных трубопроводов в местах подключения труб к источникам тока формируются специальные точки с повышенным уровнем напряжения электрического поля — из-за этого может происходить повреждение труб. Применение подобных блоков позволяет распределить электричество равномерно по всему защитному контуру.

Автоматизация

Контрольные пункты могут работать как в ручном, так и в автоматическое режиме:

  • В случае ручного управления изменение параметров напряжения регулируется оператором. На физическом уровне регуляция осуществляется путем переключения работы трансформатора. Регулируется работа обмотки, что позволяет менять параметры электрического тока.
  • В случае автоматического управления изменение параметров напряжения регулируется самим устройством на основе параметров, которые когда-то задал оператор. На физическом уровне управление осуществляется с помощью специальных полупроводников-тиристоров. Они включаются или выключаются при отклонении параметров электрического тока от заданных параметров.

защита от коррозии

Электрохимзащита (ЭХЗ)

Средства противокоррозионной защиты

  1. Коррозия подземных трубопроводов и защита от нее
  2. Установки катодной защиты
  3. Установки дренажной защиты
  4. Установки гальванической защиты
  5. Установки с протяженными или распределенными анодами.

1. Коррозия подземных трубопроводов и защита от нее

Коррозия подземных трубопроводов является одной из основных причин их разгерметизации вследствие образования каверн, трещин и разрывов. Коррозия металлов, т.е. их окисление — это переход атомов металла из свободного состояния в химически связанное, ионное. При этом атомы металла теряют свои электроны, а окислители их принимают. На подземном трубопроводе за счет неоднородности металла трубы и из-за неоднородности грунта (как по физическим свойствам, таки по химическому составу) возникают участки с различным электродным потенциалом, что обуславливает образование гальванических коррозионных. Важнейшими видами коррозии являются: поверхностная (сплошная по всей поверхности), местная в виде раковин, язвенная, щелевая и усталостное коррозионное растрескивание. Два последних вида коррозии представляют наибольшую опасность для подземных трубопроводов. Поверхностная коррозия лишь в редких случаях приводит к повреждениям, тогда как по причине язвенной коррозии происходит наибольшее число повреждений. Коррозионная ситуация, в которой находится металлический трубопровод в грунте, зависит от большого количества факторов, связанных с грунтовыми и климатическими условиями, особенностями трассы, условиями эксплуатации. К таким факторам относятся:

  • влажность грунта,
  • химический состав грунта,
  • кислотность грунтового электролита,
  • структура грунта,
  • температура транспортируемого газа

Наиболее сильным отрицательным проявлением блуждающих токов в земле, вызываемое электрифицированным рельсовым транспортом постоянного тока, является электрокоррозионное разрушение трубопроводов. Интенсивность блуждающих токов и их влияние на подземные трубопроводы зависит от таких факторов, как:

  • переходное сопротивление рельс-земля;
  • продольное сопротивление ходовых рельсов;
  • расстояние между тяговыми подстанциями;
  • потребление тока электропоездами;
  • число и сечение отсасывающих линий;
  • удельное электрическое сопротивление грунта;
  • расстояние и расположение трубопровода относительно пути;
  • переходное и продольное сопротивление трубопровода.

Следует отметить, что блуждающие токи в катодных зонах оказывают защитное воздействие на сооружение, поэтому в таких местах катодная защита трубопровода может быть осуществлена без больших капитальных затрат.

Методы защиты подземных металлических трубопроводов от коррозии подразделяются на пассивные и активные.

Пассивный метод защиты от коррозии предполагает создание непроницаемого барьера между металлом трубопровода и окружающим его грунтом. Это достигается нанесением на трубу специальных защитных покрытий (битум, каменноугольный пек, полимерные ленты, эпоксидные смолы и пр).

На практике не удается добиться полной cплошности изоляционного покрытия. Различные виды покрытия имеют различную диффузионную проницаемость и поэтому обеспечивают различную изоляцию трубы от окружающей среды. В процессе строительства и эксплуатации в изоляционном покрытии возникают трещины, задиры, вмятины и другие дефекты. Наиболее опасными являются сквозные повреждения защитного покрытия, где, практически, и протекает грунтовая коррозия.

Так как пассивным методом не удается осуществить полную защиту трубопровода от коррозии, одновременно применяется активная защита, связанная с управлением электрохимическими процессами, протекающими на границе металла трубы и грунтового электролита. Такая защита носит название комплексной защиты.

Активный метод защиты от коррозии осуществляется путем катодной поляризации и основан на снижении скорости растворения металла по мере смещения его потенциала коррозии в область более отрицательных значений, чем естественный потенциал. Опытным путем установили, что величина потенциала катодной защиты стали составляет минус 0,85 Вольт относительно медносульфатного электрода сравнения. Так как естественный потенциал стали в грунте примерно равен -0,55…-0,6 Вольта, то для осуществления катодной защиты необходимо сместить потенциал коррозии на 0,25…0,30 Вольта в отрицательную сторону.

Прилагая между поверхностью металла трубы и грунтом электрический ток, необходимо достигнуть снижения потенциала в дефектных местах изоляции трубы до значения ниже критерия защитного потенциала, равного — 0,9 В. В результате этого скорость коррозии значительно снижается.

2. Установки катодной защиты Катодную защиту трубопроводов можно осуществить двумя методами:

  • применением магниевых жертвенных анодов-протекторов (гальванический метод);
  • применением внешних источников постоянного тока, минус которых соединяется с трубой, а плюс — с анодным заземлением (электрический метод).

В основу гальванического метода положен тот факт, что различные металлы в электролите имеют различные электродные потенциалы. Если образовать гальванопару из двух металлов и поместить их в электролит, то металл с более отрицательным потенциалом станет анодом и будет разрушаться, защищая, тем самым, металл с менее отрицательным потенциалом. На практике в качестве жертвенных гальванических анодов используются протекторы из магниевых, алюминиевых и цинковых сплавов.

Применение катодной защиты с помощью протекторов эффективно только в низкоомных грунтах (до 50 Ом-м). В высокоомных грунтах такой метод необходимой защищенности не обеспечивает. Катодная защита внешними источниками тока более сложная и трудоемкая, но она мало зависит от удельного сопротивления грунта и имеет неограниченный энергетический ресурс.

В качестве источников постоянного тока, как правило, используются преобразователи различной конструкции, питающиеся от сети переменного тока. Преобразователи позволяют регулировать защитный ток в широких пределах, обеспечивая защиту трубопровода в любых условиях.

В качестве источников питания установок катодной защиты используются воздушные линии 0,4; 6; 10 кВ. Защитный ток, накладываемый на трубопровод от преобразователя и создающий разность потенциалов «труба-земля», распределяется неравномерно по длине трубопровода. Поэтому максимальное по абсолютной величине значение этой разности находится в точке подключения источника тока (точке дренажа). По мере удаления от этой точки разность потенциалов «труба-земля» уменьшается. Чрезмерное завышение разности потенциалов отрицательно влияет на адгезию покрытия и может вызвать наводораживание металла трубы, что может стать причиной водородного растрескивания. Катодная защита является одним из методов борьбы с коррозией металлов в агрессивных химических средах. Она основана на переводе металла из активного состояния в пассивное и поддержании этого состояния при помощи внешнего катодного тока. Для защиты подземных трубопроводов от коррозии по трассе их залегания сооружаются станции катодной защиты (СКЗ). В состав СКЗ входят источник постоянного тока (защитная установка), анодное заземление, контрольно-измерительный пункт, соединительные провода и кабели. В зависимости от условий защитные установки могут питаться от сети переменного тока 0,4; 6 или 10кВ или от автономных источников. При защите многониточных трубопроводов, проложенных в одном коридоре, может быть смонтировано несколько установок и сооружено несколько анодных заземлений. Однако, учитывая то, что при перерывах в работе системы защиты, из-за разности естественных потенциалов соединенных глухой перемычкой труб, образуются мощные гальванопары, приводящие к интенсивной коррозии, соединение труб с установкой должно осуществляться через специальные блоки совместной защиты. Эти блоки не только разъединяют трубы между собой, но и позволяют устанавливать оптимальный потенциал на каждой трубе. В качестве источников постоянного тока для катодной защиты на СКЗ в основном используются преобразователи, которые питаются от сети 220 В промышленной частоты. Регулировка выходного напряжения преобразователя осуществляется вручную, путем переключения отводов обмотки трансформатора, или автоматически, с помощью управляемых вентилей (тиристоров). Если установки катодной защиты работают в условиях, изменяющихся во времени, которые могут обусловливаться воздействием блуждающих токов, изменением удельного сопротивления грунта или другими факторами, то целесообразно предусматривать преобразователи с автоматическим регулированием выходного напряжения. Автоматическое регулирование может осуществляться по потенциалу защищаемого сооружения (преобразователи потенциостаты) или по току защиты (преобразователи гальваностаты).

3. Установки дренажной защиты

Электрический дренаж является наиболее простым, не требующим источника тока видом активной защиты, так как трубопровод электрически соединяется с тяговыми рельсами источника блуждающих токов. Источником защитного тока является разность потенциалов трубопровод-рельс, возникающая в результате работы электрифицированного железнодорожного транспорта и наличия поля блуждающих токов. Протекание дренажного тока создает требуемое смещение потенциала на подземном трубопроводе. Как правило, в качестве защитного устройства используется плавкие предохранители, однако находят применение и автоматические выключатели максимальной нагрузки с возвратом, то есть восстанавливающие цепь дренажа после спадания опасного для элементов установки тока. В качестве поляризованного элемента используются вентильные блоки, собранные из нескольких, соединенных параллельно лавинных кремниевых диодов. Регулирование тока в цепи дренажа осуществляется изменением сопротивления в этой цепи путем переключения активных резисторов. Если применение поляризованных электродренажей неэффективно, то используется усиленные (форсированные) электродренажи, представляющие собой установку катодной защиты, в качестве анодного заземлителя которой используются рельсы электрифицированной железной дороги. Ток форсированного дренажа, работающего в режиме катодной защиты, не должен превышать 100А, и применение его не должно приводить к появлению положительных потенциалов рельсов относительно земли, чтобы исключить коррозию рельсов и рельсовых скреплений, а также присоединенных к ним конструкций.

Электродренажную защиту допускается подключать к рельсовой сети непосредственно лишь к средним точкам путевых дроссель-трансформаторов через два на третий дроссельный пункт. Более частое подключение допускается, если в цепи дренажа включено специальное защитное устройство. В качестве такого устройства может быть использован дроссель, полное входное сопротивление которого сигнальному току системы СЦБ магистральных железных дорог частотой 50 Гц составляет не менее 5 Ом.

4. Установки гальванической защиты

Установки гальванической защиты (протекторные установки) применяются для катодной защиты подземных металлических сооружений в тех случаях, когда применение установок, питающихся от внешних источников тока, экономически не целесообразно: отсутствие линий электропитания, небольшая протяженность объекта и т.п.

Обычно протекторные установки применяются для катодной защиты следующих подземных сооружений:

  • резервуаров и трубопроводов, не имеющих электрических контактов со смежными протяженными коммуникациями;
  • отдельных участков трубопроводов, которые не обеспечиваются достаточным уровнем защиты от преобразователей;
  • участков трубопроводов, электрически отсеченных от магистрали изолирующими соединениями;
  • стальных защитных кожухов (патронов), подземных резервуаров и емкостей, стальных опор и свай и других сосредоточенных объектов;
  • линейной части строящихся магистральных трубопроводов до введения в строй установок постоянной катодной защиты.

Достаточно эффективную защиту протекторными установками можно осуществить в грунтах с удельным электросопротивлением не более 50 Ом.

5. Установки с протяженными или распределенными анодами.

Как уже отмечалось, при применении традиционной схемы катодной защиты распределение защитного потенциала вдоль трубопровода неравномерно. Неравномерность распределения защитного потенциала приводит как к избыточной защите вблизи точки дренажа, т.е. к не-производительному расходу электроэнергии, так и к уменьшению защитной зоны установки. Этого недостатка можно избежать используя схему с протяженными или распределенными анодами. Технологическая схема ЭХЗ с распределенными анодами позволяет увеличить длину защитной зоны по сравнению со схемой катодной защиты с сосредоточенными анодами, а также обеспечивает более равномерное распределение защитного потенциала. При применении технологической схемы ЗХЗ с распределенными анодами могут использоваться различные схемы размещения анодных заземлений. Наиболее простой является схема с анодными заземлениями, равномерно установленными вдоль газопровода. Регулировка защитного потенциала осуществляется путем изменения тока анодного заземления при помощи регулировочного сопротивления или любого другого устройства, обеспечивающего изменение тока в необходимых пределах. В случае выполнения заземлений из нескольких заземлителей регулировка защитного тока может осуществляться за счет изменения числа включенных заземлителей. В общем случае заземлители, ближайшие к преобразователю, должны иметь более высокое переходное сопротивление. Протекторная защита Электрохимическая защита при помощи протекторов основана на том, что за счет разности потенциалов протектора и защищаемого металла в среде, представляющей собой электролит, происходит восстановление металла и растворение тела протектора. Поскольку основная масса металлических конструкций в мире делается из железа, в качестве протектора могут использоваться металлы с более отрицательным, чем у железа, электродным потенциалом. Их три — цинк, алюминий и магний. Основное отличие магниевых протекторов — наибольшая разность потенциалов магния и стали, благотворно влияющая на радиус защитного действия, который составляет от 10 до 200 м, что позволяет использовать меньшее количество магниевых протекторов, чем цинковых и алюминиевых. Кроме того, у магния и магниевых сплавов, в отличие от цинка и алюминия, отсутствует поляризация, сопровождаемая уменьшением токоотдачи. Эта особенность определяет основное применение магниевых протекторов для защиты подземных трубопроводов в грунтах с высоким удельным сопротивлением

Особенности катодной защиты труб

Коррозия в трубопроводах обычно возникает из-за различных дефектов и повреждений труб — разрывы, растрескивание, появление щелей и так далее. Из-за коррозии нарушается герметизация труб, что может привести к полной или частичной поломке трубопровода. Особенно остро эта проблема стоит для подземных трубопроводов. При расположении труб под землей создаются участки с разным электрическим потенциалом. Это связано с неоднородностью грунта и наличия в земли различного мусора неорганического происхождения. При наличии серьезной разности потенциалов отрицательно заряженные ионы в земле начинают вступать в реакцию в металлом. Это приводит к коррозии, которая быстро разрушает трубопровод.

Электрический потенциал

Катодная защита трубопроводов от коррозии осуществляется по двум стандартным схемам. С помощью катодной поляризации и с помощью создания внешних станций. Защита трубопроводов должна быть направлена в первую очередь на снижения скорости разрушения материала трубы. Делается это с помощью уменьшения электрического потенциала трубы в сравнении с электрическим потенциалом грунта:

  • Электрический потенциал большинства современных труб составляет приблизительно 0,8-0,9 вольт.
  • Экспериментальным путем было показано, что основные породы грунта обладают потенциалом приблизительно 0,5-0,6 вольт.

Для уравнения электрических потенциалов необходимо снизить потенциал труб всего на 0,3-0,4 вольт. Это позволяет практически полностью остановить появление ржавчины. В случае правильного проведения работ скорость естественного ржавления составит менее 1 мм в год.

катодная защита трубопроводов

Выбор способа

Для труб подходит технология создания внешних станций защиты. В качестве источников питания в данном случае используют воздушные электролинии с напряжением от 500 до 10000 вольт. Чем больше напряжение, тем больше труб можно обслужить. Иногда таких линий нет на том или ином участке. В таком случае имеет смысл монтаж различных генераторов.

У технологии внешних станций есть один крупный недостаток. Для создания защиты придется проводить трудоемкие и сложные работы. Это значительно увеличивает стоимость создания трубопровода. При работе с большим напряжением в точке подачи электричества может создаваться избыточное электрическое напряжение — из-за этого может возникнуть водородное растрескивание труб, поэтому при проведении монтажных работ разводку электричества нужно производить аккуратно.

Вместо технологии защитных станций можно использовать методику применения гальванических анодов для создания эффекта поляризации. Эта технология подходит для грунтов с малым удельным сопротивлением (до 50 Ом на 1 кв. м). Если же удельное сопротивление грунта будет очень большим, то технология применения гальванических анодов является практически бесполезной в связи с ее малой эффективностью.

Описание технологии

Катодная защита от коррозии производится с помощью постоянного электротока, подаваемого на обрабатываемое изделие, и делает потенциал заготовки отрицательным. Для этой цели зачастую применяются выпрямители.

Объект, который подсоединен к источнику электротока, считается «минусом», то есть катодом, а подведенное заземление является анодом, то есть «плюсом». Главное условие — наличие хорошей электропроводной среды. Для подземных труб ею является грунт.

При реализации этой технологии между почвой (электропроводной средой) и обрабатываемым объектом должна обязательно поддерживаться разница потенциалов электротока. Величину этого показателя можно определить с применением вольтметра высокоомного типа.

Особенности эффективной работы

Коррозия зачастую является виновницей разгерметизации трубопроводов. В связи с повреждением структуры металла, на конструкции образуются трещины, каверны и разрывы. Эта проблема крайне актуальна для трубопроводов под землей, ведь они постоянно контактируют с грунтовыми водами.

Катодная методика в этой ситуации позволяет минимизировать процесс растворения и окисления металлического сплава посредством изменения исходного коррозийного потенциала.

Результаты практических испытаний говорят о том, что потенциал поляризации металлических сплавов с помощью катодной методики замедляет коррозию.

Для того чтобы добиться эффективной защиты, нужно с помощью постоянного электротока уменьшить катодный потенциал материала, который использовался для создания трубопровода. В этой ситуации быстрота корродирования металла не будет превышать десяти микрометров в год.

Кроме того, катодная защита — самое лучшее решение для защиты трубопровода под землей от влияния блуждающих электротоков. Блуждающие токи — это электрозаряд, проникающий в почву при работе громоотвода, движения электропоездов и т. д.

Для обеспечения антикоррозийной защиты могут применяться линии электропередач или портативные генераторы, функционирующие на дизельном топливе или газу.

Особенности катодной защиты автомобилей

Коррозия на автомобилях часто появляется внезапно. Скорость её распространения очень высокая, поскольку у авто есть большое количество подвижных элементов. Во время эксплуатации в таких элементах могут образовываться различные маленькие трещины и вмятины. Это значительно увеличивает риск появления коррозии. Катодная защита автомобиля от коррозии обычно осуществляется путем перераспределения электрического потенциала.

Обычно используются специальные электронные модули, которые имеют компактные размеры и монтируются внутри автомобиля. Монтаж подобных блоков занимает не более 20 минут.

защита трубопроводов

Дополнительная обработка

Также стоит обратить внимание, что метод катодной защиты обычно комбинируется с другими техниками:

  • Все основные детали автомобиля покрываются специальными красками и мастиками. Они создают на поверхности металла защитный слой. Этот слой обладает электрической нейтральностью. Поэтому при контакте с электрически активными веществами или ионами ржавление не происходит.
  • Некоторые элементы автомобиля могут покрываться защитными катодными пластинами, которые также минимизируют риск появления ржавчины. Пластинами обычно покрывают подвижные части, которые растрескиваются и повреждаются чаще всего. Это днище автомобиля, арки задних колес, фары, внутренние поверхности дверей и так далее.

катодная защита автомобиля от коррозии

Электрические методы защиты

Стальные газопроводы и резервуары, уложенные в землю, подлежат электрической защите во всех анодных и знакопеременных зонах, независимо от коррозионной активности грунта. Электрические методы защиты могут быть разделены на две основные группы:

• отвод и нейтрализация блуждающих токов;

• защита вне зоны блуждающих токов.

С помощью электрических защитных установок на газопроводах устраняются анодные и знакопеременные зоны и создаются защитные (отрицательные) потенциалы. Катодную поляризацию металлических подземных сооружений необходимо осуществлять так, чтобы создаваемые на всей их поверхности поляризационные защитные потенциалы (по абсолютной величине) были не менее 0,55 В и не более 0,80 В по отношению к неполяризующемуся водородному электроду, а также не менее -0,85 В и не более -1,15 В — к медно-сульфатному в любой среде. Потенциал неполяризующегося медносульфатного электрода по отношению к стандартному электроду принят равным 0,3 В.

Измерение поляризационных потенциалов производится по методике, приведенной в ГОСТ 9.602-2005 (приложения Р). Катодная поляризация подземных газопроводов должна осуществляться так, чтобы исключить вредное влияние ее на соседние металлические сооружения:

• уменьшение (по абсолютной величине) минимального или увеличение максимального защитного потенциала на соседних металлических сооружениях, имеющих катодную поляризацию, более чем на 0,1 В;

• опасность возникновения электрической коррозии на соседних подземных металлических сооружениях, ранее не требовавших защиты.

Для защиты газопроводов от коррозии блуждающими токами могут быть применены дренажи, катодные станции, протекторы, изолирующие фланцы и вставки, а также перемычки на смежные металлические подземные сооружения. Выбор того или иного способа защиты зависит от конкретных условий и в большинстве случаев определяется путем экспериментального сравнения эффективности их действия. В тех случаях, когда одним из способов защиты не удается обеспечить защитные потенциалы на всех участках защищаемых газопроводов, применяют сочетание нескольких способов защиты.

Электрический дренаж — способ защиты, заключающийся в отводе блуждающих токов из анодной зоны защищаемого сооружения к их источнику. Дренаж — самая дешевая защита, создающая большую зону защиты (до 5 км). Для защиты металлических подземных сооружений применимы три типа дренажей: прямой, поляризованный и усиленный. По многим причинам чаще всего применяются два последних.

В практике автономного газоснабжения дренаж имеет весьма ограниченное применение, так как не обеспечивает должного уровня защиты. Кроме того, проще предусмотреть рациональную трассу газопровода, исключающую влияние блуждающих токов от рельсового электротранспорта, еще на этапе проектирования.

Катодная защита. Принцип этого вида защиты заключается в катодной поляризации защищаемой металлической поверхности и в придании ей отрицательного потенциала относительно окружающей среды при помощи источника постоянного тока.

Защищаемое сооружение играет роль анода. Отрицательный полюс источника тока присоединяется к газопроводу (резервуару), а положительный — к заземлению (аноду). При этом постепенно разрушается анодное заземление, защищая газопровод. Этот вид применим как для защиты от коррозии блуждающими токами, так и почвенной.

Эффективность катодной защиты зависит от состояния изоляционных покрытий. При хорошей изоляции сокращается расход электроэнергии и увеличивается протяженность защищенных участков металлических сооружений. Средний расход электрической энергии в год на одну станцию катодной защиты составляет около 500 кВт^ч.

Принципиальная схема катодной защиты показана на рис. 6.2: ток от положительного полюса источника через соединительный кабель и анодное заземление переходит в грунт. Из почвы через дефектные места в изоляции ток проникает в газопровод и по дренажному кабелю направляется к отрицательному полюсу источника, создавая замкнутую цепь, по которой ток идет от анода через землю к газопроводу и далее по нему к отрицательному полюсу источника.

При этом происходит постепенное разрушение анода, что обеспечивает защиту сооружения от коррозии под влиянием его катодной поляризации. В качестве соединительных проводов применяют изолированные кабели сечением 25-77 мм2 (в зависимости от мощности станции).

Таблица 6.5. Поляризационные защитные потенциалы металла сооружения относительно насыщенного медно-сульфатного электрода сравнения

Металл сооруженияЗначение защитногопотенциала, В
минимальное

Емин

максимальное

Емакс

Сталь — 0,85 -1,15
Свинец -0,70 -1,30
Алюминий — 0,85 -1,40

Для катодной защиты рекомендуются следующие потенциалы «газопровод-земля», В:

  • максимально допустимые от почвенной коррозии — 1,2-1,5;
  • от коррозии блуждающими токами — 2,5-9,0;
  • минимальные защитные — 0,85 (по отношению к медно-сульфатному электроду).

Для защиты газопроводов и емкостей резервуарных парков применяются катодные станции различной мощности.

Катодные установки наиболее целесообразны для защиты от почвенной коррозии и менее эффективны при защите от блуждающих токов. Эксплуатация установок катодной защиты сопровождается повышенным расходом электрической энергии.

Протекторная защита — разновидность катодной защиты, нашедшая широкое применение. Необходимый защитный ток вырабатывается гальваническим элементом, роль катода выполняет металл защищаемого сооружения, анода — служит металл с более отрицательными, чем у защищаемого металла, потенциалами, а электролитом — почва, окружающая газопровод и протектор.

Установка протекторной защиты состоит из протектора (или их группы), активатора или заполнителя, соединительных проводов и клеммной коробки (в случае групповой установки протекторов).

Протекторную защиту (поляризованные анодные протекторы) применяют для защиты подземных сооружений от коррозии, высвобождаемой блуждающими токами в анодных и знакопеременных зонах, когда сила блуждающих токов может быть скомпенсирована током протектора и обеспечивается требуемый защитный потенциал в соответствии с требованиями ГОСТ 9.602-2005.
Таблица 6.6. Области применения протекторов в зависимости от коррозионной активности грунта

Удельное электрическое сопротивление, Ом*м Коррозионная активность грунта Применяемые протекторы
До 5 Весьма высокая Магниевые и цинковые протекторы весом 20 кг (при рН4 магниевые протекторы не применяются)
5-10 Высокая Магниевые и цинковые протекторы весом 10-20 кг (при рН4 магниевые протекторы не применяются)
10-20 Повышенная Магниевые протекторы весом 10 кг
20-50 Средняя Магниевые протекторы весом 5 кг

Протекторная защита заключается в присоединении к защищаемому сооружению металлических пластин или стержней (протекторов), обладающих более низким электрическим, чем металл сооружения, потенциалом (рис. 6.3). При этом суммарные потери металла не уменьшаются, а, наоборот, увеличиваются. Преимущество этого метода защиты заключается в том, что коррозия с более ценной и труднодоступной конструкции сооружения (газопровода) переносится на более дешевую и легковозобновляемую (на протектор).

Ключевая характеристика протектора — его площадь поверхности. Промышленные протекторы изготавливаются из магниевых или алюминиевых сплавов. Во время хранения на складе и при транспортировке протектор дополнительно упаковывают в бумажный мешок, который снимается перед установкой протектора в грунт.


Эффективность протекторной защиты во многом зависит от правильного выбора материала протектора и среды, в которой последний находится. Наиболее часто применяют магниевые, алюминиевые и цинковые протекторы и их сплавы. Протекторы широко применяются для защиты от почвенной коррозии подземных газопроводов и резервуаров со сжиженными углеводородными газами. Для защиты стальных резервуаров сжиженных газов от коррозии допускается предусматривать протекторы в качестве основных заземлителей защиты от прямых ударов молнии. При этом следует руководствоваться требованиями РД 34.21.122-87.

Таблица 6.7. Характеристики протекторных сплавов

Марка сплавов Потенциал по медносульфатному электроду сравнения, В Теоретическая токоотдача, А*ч/кг Коэффициент полезного действия, %
Мл 16 -1,6 2200 52
Мл 16 пч -1,6 2200 60
Мл 16 вч -1,6 2200 62
Мл 4 вч — 1,55 2200 64
Мп1 1,55 2200 65
ЦП1 — 1,1-1,15 820 95
ЦП2 — 1,1-1,15 820 95
АП1 -1,04 2880 75
АП2 -0,94 2960 70
АП3 — 1,04 2880 85
АП4 -1,14 2880 85
АП5 — 1,02 2700 70

Неполяризующиеся медносульфатные электроды сравнения длительного действия используется при измерениях разности потенциалов между подземными сооружениями и землей, определении эффективности противокоррозийной защиты подземных металлических сооружений и обеспечения работы выпрямителей катодной защиты в режиме автоматического поддержания измеряемой разности потенциалов и для измерения величины поляризационного потенциала защищенного сооружения переносными приборами.

Таблица 6.8. Эксплуатационные характеристики протекторов

Марка сплава Стационарный потенциал в активаторе (МСЭ), мВ Практическая

токоотдача,

А•ч/кг

Мл16 1590 1100
Мл16ач 1620 1400

Электроды типа ЭНЕС (ТУ 47 3994-002-10244915-95) устанавливаются стационарно в грунт на глубину от 0,8 до 3 м с выводом проводников в контрольно-измерительный пункт или ковер, а также могут быть использованы в качестве переносных.

Таблица 6.9. Химический состав магниевых и цинковых протекторных сплавов

Марка сплава Основные компоненты, % Примеси, не более, %
Mg Al Zn Mn Fe Cu Ni Si Ti
Мл16 остальное 7,5-9,0 2,0-3,0 0,15-0,50 0,03 0,15 0,01 0,2
Мл16пч 0,005 0,01 0,001 0,06
Мл16вч 0,003 0,003 0,001 0,04
Мл4вч 5,0-7,0 0,003 0,004 0,001 0,05
Мп1 2,0-4,0 0,02-0,50 0,003 0,004 0,001 0,04 0,04
ЦП1 0,4-0,6 остальное 0,001 0,001
ЦП2 0,1-0,3 0,5-0,7 0,1-0,3 0,004 0,001

Эксплуатация электродов ЭНЕС осуществляется в диапазоне температур -40…+45°С. Электроды ЭНЕС-1 выпускаются в герметичном исполнении с использованием ионообменных мембран, через которые обеспечивается контакт с грунтом без потери электролита. Ионообменная мембрана защищена от повреждений решетчатой крышкой. На корпусе электрода, выполненном из стеклонаполненного полиамида, закреплен датчик потенциала со съемной насадкой. Электроды надежно работают со станциями катодной защиты, имеющими входное сопротивление измерительной цепи от 10 кОм и выше.

Изолирующие фланцевые соединения (ИФС) — дополнительное средство защиты газопроводов от коррозии, использующееся совместно с устройствами электрохимической защиты.

Защита газопроводов с помощью ИФС заключается в том, что газопровод разбивается на отдельные участки, уменьшая таким образом его проводимость (и силу тока, протекающего по газопроводу). При разбивке газопровода на участки (секции) упрощается решение вопроса о защите их. Обычно ИФС (прокладки между фланцами из резины или эбонита) и вставки (из полиэтиленовых труб) применяют для отсечения различных подземных сооружений (газопровод и теплопровод в котельной, газопровод и водопровод в дом и т. п.) друг от друга, а также для разъединения сооружения по принадлежности.

Установка ИФС на газопроводах чаще всего предусматривается на стояках вводных газопроводов к потребителям, где возможен электрический контакт газопровода с заземленными конструкциями и коммуникациями; на подземных и надводных переходах газопроводов через препятствия (на вертикальных участках), а также на вводах (и выводах) газопроводов в ГРС, ГРП, ГРУ. С каждой стороны от ИФС устанавливаются контрольные проводники с выводом на поверхность.

Электрические перемычки. Этот способ защиты применяют в случаях, когда на одном сооружении — положительный потенциал (анодная зона), а на другом — отрицательный (катодная зона), то есть их электрическое объединение перемычками приводит к тому, что на обоих сооружениях устанавливаются отрицательные потенциалы. Такие перемычки применяют для объединения локальных и магистральных (дальних) газопроводов, а также при прокладке по одной улице или в одном районе газопроводов различного давления, например высокого и низкого. Широко практикуются перемычки при совместной защите различных сооружений. Электрические перемычки между газопроводами, выполненные из полосовой стали, должны иметь изоляционные покрытия весьма усиленного типа.

  • Главная
  • Справочник
  • Защита газопроводного и резервуарного оборудования от коррозии
  • Электрические методы защиты

Электрохимическая защита

Электрохимическая защита — относится к активным способам защиты от наружной коррозии, которые предусматривают создание такого электрического тока, в котором весь металл трубопровода, несмотря на неоднородность его включений, становится катодом, а анодом является дополнительно размещенный в грунте металл. Существуют два вида активной защиты трубопрово­дов от наружной коррозии — протекторная и катодная.

Протекторная защита трубопроводов

Борьба с коррозией металла – актуальна в нефтегазодобывающей промышленности (из-за коррозионного разрушения днищ резервуаров для отстоя нефти и промысловых трубопроводов) и других областях производственной деятельности, с высокой вероятностью техногенных катастроф. Протекторная защита трубопровода от коррозии основана на прекращении коррозии металлов под воздействием постоянного электрического тока. Протекторная защита применяется одновременно с защитными лакокрасочными покрытиями. Это сочетание позволяет увеличить срок их службы и обеспечивает равномерное распределение тока по поверхности конструкций, что компенсирует дефекты покрытия, которые возникают в процессе эксплуатации.

Катодная защита трубопроводов


Катодная защита — способ защиты сооружений принудительной катодной поляризацией с помощью внешнего источника постоянного тока. Отрицательный полюс внешнего источника тока подключают к защищаемому сооружению, которое исполняет роль катода. Для образования замкнутой по току цепи положительный полюс источника соединяется со вспомогательным электродом — анодом, который находится в той же среде (грунт, вода), что и защищаемый объект. Таким образом, катодная защита заключается в том, что защищаемый объект отрицательно поляризуется и его потенциал сдвигается до величины, при которой значительно или полностью подавляется процесс коррозии металла. Катодная защита является вспомогательным видом защиты, поэтому катодная защита используется совместно с изоляционными покрытиями, нанесенными на наружную поверхность защищаемого сооружения. В ином случае катодная поляризация неизолированного трубопровода до величины минимального защитного потенциала требовала бы значительных защитных токов.

Электрохимическая защита трубопроводов

ООО «ГКНТ» осуществляет комплексный подход при выполнении работ по электрохимической защите трубопроводов:

  • Осуществление контроля за коррозионным состоянием подземных металлических конструкций и сооружений
  • Монтаж и эксплуатация установок для электрохимической защиты
  • Проведение строительно-монтажных работ по организации электрохимической защиты
  • Осуществление пуско-наладочных работ электрохимзащиты
  • Обследование систем электрохимической защиты и выдача технического заключения
  • Проведение электроизмерительных работ в собственной лицензированной лаборатории
  • Поставка оборудования, приборов и материалов для выполнения работ по обслуживанию установок электрохимзащиты

Монтаж стоек контрольно-измерительных пунктов

Контрольно-измерительные пункты предназначены для указания расположения подземных трасс трубопроводов и осуществления контроля их электрохимической защиты. Они размещаются на промышленных площадках газораспределительных станций, на линейных частях подземных трубопроводов, на объектах добычи нефти и газа, в подземных хранилищах нефти и нефтепродуктов, в подземных хранилищах газа, и других промышленных объектах с подземными металлическими сооружениями. Контрольно-измерительный пункт состоит из стойки и закрепленного на стойке терминала. Стойка по желанию заказчика изготавливается из поливинилхлорида (ПВХ), металла или стеклопластика. Материалы применяемые при монтаже стоек контрольно-измерительных пунктов специально предназначены для их эксплуатации во всех климатических зонах на открытом воздухе. Стойка оснащается анкерным устройством, которое препятствует свободному изъятию из грунта контрольно-измерительного пункта.В комплект дополнительно включается километровый знак, который позволяет визуально контролировать местоположение трассы трубопровода с воздуха.

Монтаж систем измерения и регулирования катодного потенциала

ООО «ГКНТ» осуществляет монтаж систем измерения и регулирования катодного потенциала для защиты подземных сооружений. Все магистральные трубопроводы, подземные скважины и хранилища, снабжаются устройствами для катодной защиты от коррозии. Электрохимическая защита трубопроводов осуществляется,как правило, со станций катодной защиты, протекторные аноды применяют только при отсутствии источника тока. Системы катодной защиты должны осуществлять регулирование катодного потенциала путем присоединения к защищаемой поверхности отрицательного полюса источника постоянного тока,в то время как положительный полюс присоединяется к специально установленным анодам.

Монтаж глубинных анодных заземлителей, создание анодных полей

Глубинные заземлители предназначены для эксплуатации в местах ограниченного землеотвода под анодное поле, а также для установки в местах с низкой электропроводностью поверхностного слоя грунта и в геологически сложных районах залегания. Глубинные анодные заземлители предназначены для защиты наземных и подземных резервуаров нефтепродуктов, магистральных нефтегазопроводов, подземных стальных конструкций, скважин, заземления линий электропередач и прочих металлических конструкций, которые контактируют с грунтом и водой. Анодные заземлители изготавливаются на основе железосилидовых сплавов они стойкие к анодному растворению при работе в агрессивных щелочных или кислотных почвах, в пресных и солоноватых водах и предназначены для эксплуатации в любых грунтах.

Монтаж станций катодной защиты трубопроводов


ООО «ГКНТ» осуществляет монтаж станций катодной защиты, которые очень важны при эксплуатации стационарных нефтегазопромысловых сооружений, нефтегазопроводов, трубопроводов на континентальном шельфе. Катодная защита подземных сооружений широко распространена. Большинство магистральных трубопроводов, подземных хранилищ и скважин, снабжаются устройствами для катодной защиты в сочетании с защитными лакокрасочными покрытиями.

Электрохимическая защита трубопроводов на переходах через водные преграды, авто и железные дороги

Электрохимическая защита от коррозии- это комплекс мероприятий по снижению электрического потенциала труб и грунта. Создание электрохимической защиты трубопроводов регламентируется требованиями СНиПа 2.05.06-85. На переходах трубопроводов под железными и автомобильными дорогами участки трубопроводов, которые примыкают к ним, должны иметь кожухи и усиленный тип защитных покрытий. Электрохимическая защита кожухов на переходах через водные преграды и под авто- и железными дорогами должна быть сделана одновременно с защитой самого магистрального трубопровода. При сдаче в эксплуатацию магистрального трубопровода и в процессе его эксплуатации следует регулярно проводить контроль электрического контакта между трубопроводом и кожухом и при его обнаружении необходимо устранить.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями: