ОКСИДИРОВАНИЕ ТИТАНА В ВОДНЫХ РАСТВОРАХ Полынский И.В.,Полынская М.М.

Титан считается одним из наиболее прочных металлов. Он отлично выдерживает как механические нагрузки, так и применение в агрессивных условиях среды. Но при определенных условиях, титан также начинает портиться. Если вовремя не среагировать на возникновение проблемы, можно столкнуться с полным разрушением материала.

В этой статье будет рассказано о том, как ведет себя титан и его сплавы при столкновении с внешними катализаторами развития коррозии. Также будет затронута не менее важная тема – способы профилактики и дополнительные средства, позволяющие защитить материал от негативного внешнего воздействия и постепенного разрушения в различных средах.

Особенности протекания процесса коррозии

В основе протекания процесса коррозии лежит окисление. Оно провоцируется внешними факторами – влажностью, контактом с кислотами, щелочами и другими потенциальными угрозами.

Титан относится к категории металлов, которые хорошо сопротивляются негативному воздействию. Но при создании неверных условий и накапливании суммы факторов, возникает реальная проблема, связанная с постепенным разрушением материала.

При развитии коррозии, возникает большая опасность того, что материал полностью придет в негодность. Он теряет свою прочность, начинает разрушаться. Без правильного подхода к защите и ограничению воздействия негативных внешних условий, можно быстро лишиться даже наиболее дорогостоящих изделий.

Катализатором процесса выступает контакт с окислителем. Потому далее мы расскажем, как ведет себя сплав в разных типах агрессивных сред.

Применение

В чистом виде и в виде сплавов


Часы из титанового сплава


Заготовка титанового шпангоута истребителя F-15 до и после прессования на штамповочном прессе компании Alcoa усилием 45 тыс. тонн, май 1985
Использование металлического титана во многих отраслях промышленности обусловлено тем, что его прочность примерно равна прочности стали при том, что он на 45 % легче. Титан на 60 % тяжелее алюминия, но прочнее его примерно вдвое.

  • Титан в виде сплавов является важнейшим конструкционным материалом в авиа- и ракетостроении, в кораблестроении.
  • Металл применяется в химической промышленности (реакторы, трубопроводы, насосы, трубопроводная арматура), военной промышленности (бронежилеты, броня и противопожарные перегородки в авиации, корпуса подводных лодок), промышленных процессах (опреснительных установках, процессах целлюлозы и бумаги), автомобильной промышленности, сельскохозяйственной промышленности, пищевой промышленности, спортивных товарах, ювелирных изделиях, мобильных телефонах, лёгких сплавах и т. д.
  • Титан является физиологически инертным, благодаря чему применяется в медицине (протезы, остеопротезы, зубные имплантаты), в стоматологических и эндодонтических инструментах, украшениях для пирсинга.
  • Титановое литьё выполняют в вакуумных печах в графитовые формы. Также используется вакуумное литьё по выплавляемым моделям. Из-за технологических трудностей в художественном литье используется ограниченно. Первой в мировой практике монументальной литой скульптурой из титана является памятник Юрию Гагарину на площади его имени в Москве.
  • Титан является легирующей добавкой во многих легированных сталях и большинстве спецсплавов.
  • Нитинол (никель-титан) — сплав, обладающий памятью формы, применяемый в медицине и технике.
  • Алюминиды титана являются очень стойкими к окислению и жаропрочными, что, в свою очередь, определило их использование в авиации и автомобилестроении в качестве конструкционных материалов.
  • Титан является одним из наиболее распространённых геттерных материалов, используемых в высоковакуумных насосах.

Существует множество титановых сплавов с различными металлами. Легирующие элементы разделяют на три группы, в зависимости от их влияния на температуру полиморфного превращения: на бета-стабилизаторы, альфа-стабилизаторы и нейтральные упрочнители. Первые понижают температуру превращения, вторые повышают, третьи не влияют на неё, но приводят к растворному упрочнению матрицы. Примеры альфа-стабилизаторов: алюминий, кислород, углерод, азот. Бета-стабилизаторы: молибден, ванадий, железо, хром, никель. Нейтральные упрочнители: цирконий, олово, кремний. Бета-стабилизаторы, в свою очередь, делятся на бета-изоморфные и бета-эвтектоидообразующие.

Самым распространённым титановым сплавом является сплав Ti-6Al-4V (в российской классификации — ВТ6), содержащий около 6% алюминия и около 4% ванадия. По соотношению кристаллических фаз он классифицируется как (α+β)-сплав. На его производство идёт до 50% добываемого титана.

Ферротитан (сплав титана с железом, содержащий 18—25% титана) используют в чёрной металлургии для раскисления стали и удаления растворённых в ней нежелательных примесей (сера, азот, кислород).

В 1980-х годах около 60-65 % добываемого в мире титана использовалось в строительстве летательных аппаратов и ракет, 15% — в химическом машиностроении, 10% — в энергетике, 8% — в строительстве судов и для опреснителей воды.

В виде соединений

  • Белый диоксид титана (TiO2) используется в красках (например, титановые белила), а также при производстве бумаги и пластика. Пищевая добавка E171.
  • Титанорганические соединения (например, тетрабутоксититан) применяются в качестве катализатора и отвердителя в химической и лакокрасочной промышленности.
  • Неорганические соединения титана применяются в химической электронной, стекловолоконной промышленности в качестве добавки или покрытий.
  • Карбид титана, диборид титана, карбонитрид титана — важные компоненты сверхтвёрдых материалов для обработки металлов.
  • Нитрид титана применяется для покрытия инструментов, куполов церквей и при производстве бижутерии, так как имеет цвет, похожий на золото.
  • Титанат бария BaTiO3, титанат свинца PbTiO3 и ряд других титанатов — сегнетоэлектрики.
  • Тетрахлорид титана используется для иридизации стёкла и для создания дымовых завес.

Анализ рынков потребления

В 2005 компания Titanium Corporation

опубликовала следующую оценку потребления титана в мире:

  • 60 % — краска;
  • 20 % — пластик;
  • 13 % — бумага;
  • 7 % — машиностроение.

Особенности взаимодействия титана с агрессивными средами разного типа

Как уже было отмечено выше, титан относится к списку материалов, которые имеют хорошую естественную защиту от развития коррозийного процесса. Чтобы коррозия запустилась, во многих средах нужно поддерживать высокую температуру. При этом сам металл практически не вступает в химические реакции с различными видами веществ.

Главный защитный фактор – формирование на поверхности титана тонкой пленки. Она не допускает контакта с внешней средой и выступает в качестве барьера для окислителей. Интересная особенность титана, которая отличает его от других видов материалов – даже при удалении такой пленки, она появляется снова за счет протекания процесса пассивации. Таким образом, металл обладает свойством самозащиты от разрушительного воздействия.

Само поведение титана будет меняться в зависимости от того, какие условия были созданы вокруг детали. Рассмотрим наиболее распространенные.

Азотная кислота

Азотная кислота относится к списку сильных факторов, провоцирующих развитие окислительного процесса. При помещении разных видов металлов в такую среду, может наблюдаться растворение, протекающее с разной скоростью. Но титан относится к категории продукции, которая не поддается воздействию азотной кислоты.

Вне зависимости от концентрации раствора, коррозия титана протекает очень медленно. За год можно получить максимальный показатель не более 0,2 мм.

Единственное, что может угрожать металлу – красная дымящаяся азотная кислота. В ней наблюдается протекание интенсивной реакции, в результате которой стремительно развивается коррозия. Единственное средство для нейтрализации процесса – добавление небольшого количества воды.

Соляная кислота

Соляная кислота воздействует на титан намного интенсивнее, чем азотная. Многое зависит от температуры и концентрации раствора, в котором используется материал. Наименьшую опасность представляют разбавленные растворы.

При комнатной температуре интенсивность коррозии плавно возрастает по мере увеличения процентного содержания основного вещества в растворе. Значительным катализатором скорости становится увеличение температуры. Так даже в очень слабых растворах при нагреве до 100 градусов, скорость коррозии становится намного выше. Если при этом раствор становится насыщеннее, интенсивность становится только выше. Пример – если прогреть 20-процентный раствор соляной кислоты до температуры 60 градусов и погрузить в него деталь из титана, интенсивность коррозии увеличится до 29,8 мм в год – это очень высокая скорость порчи материала, которая может привести к его полному выходу из строя.

Пассивирующая пленка на поверхности металла становится все более тонкой и быстро удаляется. При этом стоит также помнить о том, что даже при сильном негативном воздействие соляной кислоты, опасность повреждения титана остается меньше, чем в случае с нержавеющей сталью в аналогичных условиях.

Серная кислота

В растворах с низкой концентрацией коррозии титана можно не опасаться. Даже если однопроцентный раствор серной кислоты нагреть до температуры 95 градусов, уровень повреждения будет оставаться невысоким.

Аналогично ведут себя и более концентрированные растворы, до 20%, если температура среды не поднимается выше обычной комнатной.

С увеличением температуры, коррозийный процесс становится все более интенсивным. Так если сильно прогреть 20-процентный раствор серной кислоты, титан может начать постепенно растворяться. Скорость коррозии в год достигает 10 мм. Существуют проверенные методы, позволяющие уменьшить скорость растворения. Для этого в состав нужно добавить другие варианты кислот – хромовую, марганцевую, азотную или другие.

Органические кислоты

Материал хорошо показывает себя с большинством органических кислот, практически не наблюдается химической реакции. Даже если речь идет про винную, уксусную и молочную кислоту, титан остается целостным и защитная пленка на его поверхности оказывается неповрежденной.

Расплавленные металлы

При контакте с расплавами металлов, большое значение имеет тип сплава титана. Так чистый материал даже в сильно прогретой расплавленной среде не начинает ржаветь при контакте с калием, оловом, магнием, ртутью и другими потенциально-опасными агрессивными веществами.

Плавиковая кислота

Такой раствор является наиболее опасным для титана. Даже слабый, однопроцентный раствор, очень сильно увеличивает скорость протекания коррозийного процесса. С повышением концентрации, титановые детали начинают быстро плавиться. И в этом отношении состав во многом аналогичен по особенностям своего поведения с другими типами металлов и сплавов.

Другие виды кислот

Деталь из титана можно также помещать в различные варианты кислот. К ним относятся кремнефтористоводородная и фосфорная.

Материал отлично противостоит повреждению при контакте со спиртами, перекисью водорода, бромом, хлором и многими другими.

Для того, чтобы увеличить стойкость титана к коррозии, можно использовать дополнительные окислители и ингибиторы. В качестве такого ингибитора может использоваться как медь, так и железо в разной степени концентрации.

Также материалы можно использовать и с другими металлами, которые значительно увеличивают коррозийную стойкость. К ним относятся:

  • Гафний.
  • Тантал.
  • Вольфрам.
  • Цирконий и многое другое.

Далее мы также расскажем о том, как именно легирование помогает сильно нарастить качество материала и значительно увеличить длительность его использования.

Оксидирование металла

Оксидирование представляет собой особый вид процедуры покрытия металлического материала оксидной пленкой. В результате данного процесса на металлической поверхности появляется тонкая пленка, которая выполняет барьерную функцию. Она защищает материала от попадания воздуха и влаги.

Оксидирование металла является одним из самых действенных методов для его защиты от образования на поверхности ржавчины. Пленка покрывает его достаточно плотным слоем. После проведения процедуры все процессы окисления металла полностью прекращаются. В итоге изделия, которые обработаны методом оксидирования, служат дольше и сохраняют свои привлекательные внешние качества на долгие годы.

Данная процедура обработки разных видов изделий применяется не только для того, чтобы защитить металлические изделия от коррозии. Данная ее функция известна многим. Однако в некоторых ситуациях она используется для того, чтобы придать металлическому изделию декоративные качества.

Сегодня процедуре оксидирования подвергаются многие виды металлов.

В связи с этим выделяют:

  • Оксидирование алюминия

Данная процедура встречается достаточно частою. Для нее используется:

  • Анодное оксидирование алюминия

  • Химическое оксидирование алюминия

  • Электрохимическое оксидирование алюминия

В результате после обработки металл получает небольшой слой оксидной пленки, которая обладает отличными защитными качествами.

Сама процедура не отнимает много времени. Она проводится после предварительной подготовки металла. Его поверхность должна быть чистой и обезжиренной, чтобы оксидная пленка имела лучшее сцепление с алюминием.

Для алюминия применяется еще технология под название цветное оксидирование алюминия. Благодаря этому на поверхности металла образуется пленка определенного цвета. Этот процесс носит декоративный характер. Эффект от этого метода длится достаточно продолжительный период времени.

  • Оксидирование стали


Сегодня не редко проводится оксидирование стальных изделий. Они являются подверженными образованию коррозийной пленки.

Химическое оксидирование стали

Для обработки стального материала применяется химический вид оксидирования. Он заключается в том, что сталь погружается в специально приготовленный кислый раствор, который способствует образованию на поверхности стали оксидную пленку. Она обладает небольшой толщиной. Однако у нее высокий уровень прочности.

Перед тем, как металл будет обработан оксидирующим веществом, его тщательным образом подготавливают. Для этого используются специальные средства для удаления загрязнений и жирной пленки.

  • Оксидирование титана

Как известно такой металл, как титан и его сплавы обладают низким уровнем износостойкости. Для того чтобы металл приобрел прочность и твердость применяются разные методы. Одним из них является оксидирование. Благодаря нему на поверхности металла появляется защитная пленка, которая увеличивает прочность титана в разы.

Таблица 1. Оксидирование металла — подготовка поверхности.

Состав и режимНомер раствора
123
Состав, массовая доля, %
серная кислота (плотность 1,8 г/см3)90—9220—30
азотная кислота (плотность 1,4 г/см3)95-975-640—60
фтористоводородная кислота или ее соли3-50,5—110—12
Рабочая температура, К290—300290—300290—300
Выдержка, мин0,1—0,21—20,2—0,3

Легирование как метод защиты титана от коррозии

Одним из наиболее распространенных и хорошо зарекомендовавших себя средств защиты титана от коррозии, становится использование дополнительных легирующих элементов. Все они разделены на несколько групп. К ним относятся:

  • Первая. Это элементы с невысоким пассивирующим эффектом. Лучше всего показывает себя добавление таких элементов, как Мо, Та, Nb. Главное преимущество использования легирования элемента первой группы – снижение активности анодного процесса. При этом сама среда также может сильно влиять на то, как именно легирующий элемент влияет на стабильность металла.
  • Вторая. Ко второй группе относятся такие элементы, как Cr, Ni, Mn, Fe. Важное отличие элементов, что у них есть собственные высокие защитные коррозийные свойства. Лучше всего материалы обеспечивают защиту от коррозии при использовании в кислотах с низким уровнем интенсивности окисления.
  • Третья. Есть несколько категорий элементов – это Al, Sn, О, N. Стойкость титана коррозии оказывается выше при легировании вне зависимости от состояния – как пассивного, так и активного. Также обеспечиваются хорошие параметры при внедрении материала в нейтральные среды. Уровень отрицательного воздействия при этом оказывается невысоким, потому что пленки на поверхности титана не меняют своего состава.
  • Четвертая. Наиболее эффективные элементы – это Си, W, Мо, Ni, Re. Лучше всего использовать такое средство легирования для того, чтобы затормозить или полностью исключить катодный процесс.

Стоит также обратить внимание на то, при помощи какого материала проводится легирование. Лучше всего показывает использование таких веществ, как ниобий и молибден. Также можно активно использовать тантал и цирконий.

Коррозия титана и титановых сплавов

Создание новых технологий и производств приводит к применению агрессивных сред. Использование последних ставит вопрос о конструкционных материалах, стойких к их воздействию. Большой интерес в этом плане представляют металлы подгрупп титана и ванадия. Они уже нашли применение в современном приборостроении. Так, например, они широко используются в ракетной и авиационной технике, а также при создании ядерных реакторов.

Титан и титановые сплавы широко применяются в различных отраслях промышленности, благодаря высоким значениям удельной прочности и коррозионной стойкости.

Сплав ВТ6 относится к числу первых отечественных конструкционных титановых сплавов. В таблице 1 представлен химический состав сплава ВТ6.

Таблица 1 — Химический состав титанового сплава ВТ6.

Основные

элементы

Al V Примеси Fe Si O C N H Zr
Содержание, % 6,0 4,0 Содержание не более, % 0,3 0,1 0,2 0,1 0,05 0,015 0,3

Титан может участвовать во многих соединениях, он химически весьма активен. И в то же время титан является одним из немногих металлов с исключительно высокой коррозионной стойкостью: он практически вечен в атмосфере воздуха, в холодной и кипящей воде, весьма стоек в морской воде, в растворах многих солей, неорганических и органических кислотах. По своей коррозионной стойкости в морской воде он превосходит все металлы, за исключением благородных – золота, платины и т. п., большинство видов нержавеющей стали, никелевые, медные и другие сплавы. В воде, во многих агрессивных средах чистый титан не подвержен коррозии. Почему же это происходит? Почему так активно, а нередко и бурно, со взрывами, реагирующий почти со всеми элементами периодической системы титан стоек к коррозии?

Общие представление о коррозии металлов

Получение металлов из их природных соединений всегда сопровождается значительной затратой энергии. Исключение составляют только металлы, встречающиеся в природе в свободном виде: золото, серебро, платина, ртуть. Энергия, затраченная на получение металлов, накапливается в них как свободная энергия Гиббса и делает их химически активными веществами, переходящими в результате взаимодействия с окружающей средой в состояние положительно заряженных ионов:

Меn++ nе ? Ме0 (G>0); Ме0 – ne ? Ме n+ (G

Самопроизвольно протекающий процесс разрушения металлов в результате взаимодействия с окружающей средой, происходящий с выделением энергии и рассеиванием вещества (рост энтропии), называется коррозией. Коррозионные процессы протекают необратимо в соответствии со вторым началом термодинамики.

Подсчитано, что около 20% ежегодной выплавки металлов расходуется в коррозионных процессах. Большой вред приносит коррозия в машиностроении, так как из-за коррозионного разрушения какой-нибудь одной детали может выйти из строя машина, стоящая нередко десятки и сотни тысяч рублей. Коррозия снижает точность показаний приборов и стабильность их работы во времени. Незначительная коррозия электрического контакта приводит к отказу при его включении. Меры борьбы с коррозионными процессами являются актуальной задачей современной техники.

Существенно влияет на коррозионные процессы уровень внешних или внутренних (остаточных) напряжений и их распределение в металле изделия.

Химической коррозии подвержены детали и узлы машин, работающих при высоких температурах, — двигатели поршневого и турбинного типа, ракетные двигатели и т. п. Химическое сродство большинства металлов к кислороду при высоких температурах почти неограниченно, так как оксиды всех технически важных металлов способны растворяться в металлах и уходить из равновесной системы:

2Ме(т) + O2(г) 2МеО(т);

МеО(т) [МеО] (р-р)

В этих условиях окисление всегда возможно, но наряду с растворением оксида появляется и оксидный слой на поверхности металла, который может тормозить процесс окисления.

Скорость окисления металла зависит от скорости собственно химической реакции и скорости диффузии окислителя через пленку, а поэтому защитное действие пленки тем выше, чем лучше ее сплошность и ниже диффузионная способность. Сплошность пленки, образующейся на поверхности металла, можно оценить по отношению объема образовавшегося оксида или другого какого-либо соединения к объему израсходованного на образование этого оксида металла (фактор Пиллинга—Бэдвордса).

Коэффициент ? (фактор Пиллинга — Бэдвордса) у разных металлов имеет разные значения и приведен в таблице 2.

Таблица 2. Значение коэффициента ? для некоторых металлов

Металл Оксид ? Металл Оксид ?
Mg MgO 0.79 Zn ZnO 1.58
Pb PbO 1.15 Zr ZrO2 1.60
Cd CdO 1.27 Be BeO 1.67
Al Al2O2 1.31 Cu Cu2O 1.67
Sn SnO2 1.33 Cu CuO 1.74
Ni NiO 1.52 Ti Ti2O3 1.76
Nb NbO 1.57 Cr Cr2O3 2.02
Nb Nb2O3 2.81

Сплошные и устойчивые оксидные слои образуются при ? = 1,2—1,6, но при больших значениях ? пленки получаются несплошные, легко отделяющиеся от поверхности металла (железная окалина) в результате возникающих внутренних напряжений.

Поведение титана и его сплавов в различных агрессивных средах

Реакции титана со многими элементами происходят только при высоких температурах. При обычных температурах химическая активность титана чрезвычайно мала и он практически не вступает в реакции. Связано это с тем, что на свежей поверхности чистого титана, как только она образуется, очень быстро появляется инертная, хорошо срастающаяся с металлом тончайшая (в несколько ангстрем (1А=10-10м) пленка диоксида титана, предохраняющая его от дальнейшего окисления. Если даже эту пленку снять, то в любой среде, содержащей кислород или другие сильные окислители (например, в азотной или хромовой кислоте), эта пленка появляется вновь, и металл, как говорят, ею «пассивируется», т. е. защищает сам себя от дальнейшего разрушения.

Рассмотрим несколько подробнее поведение чистого титана в различных агрессивных средах: в таких, как азотная, соляная, серная, «царская водка» и другие кислоты и щелочи.

В азотной кислоте, являющейся сильным окислителем, в котором быстро растворяются очень многие металлы, титан исключительно стоек. При любой концентрации азотной кислоты (от 10 до 99%-ной), при любых температурах скорость коррозии титана не превышает 0,1–0,2 мм/год. Опасна только красная дымящая азотная кислота, пересыщенная (20% и более) свободными диоксидами азота: в ней чистый титан бурно, со взрывом, реагирует. Однако стоит добавить в такую кислоту хотя бы немного воды (1–2% и более), как реакция заканчивается, и коррозия титана прекращается.

В соляной кислоте титан стоек лишь в разбавленных ее растворах. Например, в 0,5%-ной соляной кислоте даже при нагревании до 100° С скорость коррозии титана не превышает 0,01 мм/год, в 10%-ной при комнатной температуре скорость коррозии достигает 0,1 мм/год, а в 20%-ной при 20° С–0,58 мм/год. При нагревании скорость коррозии титана в соляной кислоте резко повышается. Так, даже в 1,5%-ной соляной кислоте при 100° С скорость коррозии титана составляет 4,4 мм/год, а в 20%-ной при нагревании до 60° С – уже 29,8 мм/год. Это объясняется тем, что соляная кислота, особенно при нагревании, растворяет пассивирующую пленку диоксида титана и начинается растворение металла. Однако скорость коррозии титана в соляной кислоте при всех условиях остается ниже, чем у нержавеющих сталей.

В серной кислоте слабой концентрации (до 0,5–1% ) титан и большинство его сплавов стойкие даже при температуре раствора до 50–95° С. Стоек титан и в более концентрированных растворах (10–20%-ных) при комнатной температуре, в этих условиях скорость коррозии титана не превышает 0,005–0,01 мм/год. Но с повышением температуры раствора титан в серной кислоте даже сравнительно слабой концентрации (10–20%-ной) начинает растворяться, причем скорость коррозии достигает 9–10 мм/год. Серная кислота, так же как и соляная, разрушает защитную пленку диоксида титана и повышает его растворимость. Ее можно резко понизить, если в растворы этих кислот добавлять определенное количество азотной, хромовой, марганцевой кислот, соединений хлора или других окислителей, которые быстро пассивируют поверхность титана защитной пленкой и прекращают его дальнейшее растворение. Вот почему титан практически единственный металл, не растворяющийся в «царской водке»: в ней при обычных температурах (10–20° С) коррозия титана не превышает 0,005 мм/год. Слабо корродирует титан и в кипящей «царской водке», а ведь в ней, как известно, многие металлы, и даже такие, как золото, растворяются почти мгновенно.

Очень слабо корродирует титан в большинстве органических кислот (уксусной, молочной, винной), в разбавленных щелочах, в растворах многих хлористых солей, в физиологическом растворе. А вот с расплавами хлоридов при температуре выше 375° С титан взаимодействует очень бурно.

В расплаве многих металлов чистый титан обнаруживает удивительную стойкость. В жидких горячих магнии, олове, галлии, ртути, литии, натрии, калии, в расплавленной сере титан практически не корродирует, и лишь при очень высоких температурах расплавов (выше 300–400° С) скорость его коррозии в них может достигать 1 мм/год. Однако есть немало агрессивных растворов и расплавов, в которых титан растворяется очень интенсивно.

Главный «враг» титана – плавиковая кислота (HF). Даже в 1%-ном ее растворе скорость коррозии титана очень высока, а в более концентрированных растворах титан «тает», как лед в горячей воде. Фтор – этот «разрушающий все» (греч.) элемент – бурно реагирует практически со всеми металлами и сжигает их.

Не может противостоять титан кремнефтористоводородной и фосфорной кислотам даже слабой концентрации, перекиси водорода, сухим хлору и брому, спиртам, в том числе спиртовой настойке йода, расплавленному цинку. Однако стойкость титана можно увеличить, если добавить различные окислители – так называемые ингибиторы, например, в растворы соляной и серной кислот – азотную и хромовую. Ингибиторами могут быть и ионы различных металлов в растворе: железо, медь и др.

В титан можно вводить некоторые металлы, повышающие его стойкость в десятки и сотни раз, например до 10% циркония, гафния, тантала, вольфрама. Введение в титан 20–30% молибдена делает, этот сплав настолько устойчивым к любым концентрациям соляной, серной и других кислот, что он может заменить даже золото в работе с этими кислотами. Наибольший эффект достигается благодаря добавкам в титан четырех металлов платиновой группы: платины, палладия, родия и рутения. Достаточно всего 0,2% этих металлов, чтобы снизить скорость коррозии титана в кипящих концентрированных соляной и серной кислотах в десятки раз. Следует отметить, что благородные платиноиды влияют лишь на стойкость титана, а если добавлять их, скажем, в железо, алюминий, магний, разрушение и коррозия этих конструкционных металлов не уменьшаются.

Влияние легирующих элементов в титане на коррозионную стойкость

Все присутствующие в титане легирующие элементы по коррозионной стойкости можно разделить на четыре группы.

К первой группе относятся легко пассивирующиеся элементы, повышающие коррозионную стойкость титана за счет торможения анодного процесса (в различной степени и в зависимости от природы среды). К этой группе относятся следующие наиболее важные легирующие: Мо, Та, Nb, Zr, V (расположены в порядке убывания благоприятного воздействия на коррозионную стойкость).

Ко второй группе металлов, оказывающих сходное влияние на коррозионную стойкость титана, относятся Cr, Ni, Mn, Fe. Эти элементы, некоторые из которых сами являются коррозионностойкими (Cr, Ni), хотя и не сильно, но снижают коррозионную стойкость титана, особенно в неокислительных кислотах по мере повышения легирования титана.

К третьей группе легирующих элементов, имеющих общие черты влияния на коррозионную стойкость титана, относятся Al, Sn, О, N, С. Установлено, что добавки алюминия снижают коррозионную стойкость титана в активном и пассивном состояниях. В нейтральных средах алюминий (до 5% Al) хотя и оказывает отрицательное влияние, но оно невелико. Понижение коррозионной стойкости при легировании алюминием связано с облегчением анодного и катодного процессов вследствие изменения химической природы пассивных пленок.

К четвертой группе легирующих элементов, однотипно влияющих на коррозионную стойкость титана, относятся металлы с низким сопротивлением катодному процессу. По возрастанию эффективности воздействия на титан эти элементы располагаются в следующий ряд: Си, W, Мо, Ni, Re, Ru, Pd, Pt.

Доказано, что введение в титановые сплавы таких элементов, как молибден, ниобий, цирконий, тантал не лимитируется по количеству. Они повышают коррозионную стойкость, способствуют увеличению прочности.

Электрохимическая коррозия под действием внутренних макро- и микрогальванических пар

Раньше электрохимическую коррозию называли гальванической коррозией, так как разрушение металла происходит под действием возникающих гальванических пар.

Рассмотрим различные случаи возникновения коррозионных гальванических пар.

1. Контакт с электролитом двух разных металлов в случае сочетания в одном узле или детали металлов различной активности в данной среде, или в случае применения сплава эвтектического типа из двух металлов разной активности.

2. Контакт металла и его соединения, обладающего металлообразными или полупроводниковыми свойствами. В любом случае свободный металл имеет отрицательный электрический заряд, а соединение — положительный заряд, так как в нем часть электронов проводимости связана. Это также справедливо и для интерметаллидов.

3. Различные концентрации электролитов или воздуха, растворенного в жидком электролите.

4. Различный уровень механических напряжений в одной и той же детали.

Рассмотрим более подробнее последний случай возникновения коррозионной гальванической пары. Коррозионные пары могут возникать при действии внешних или внутренних механических напряжений (остаточных напряжений, например при сварке). Если пластинку стали, дюраля или титанового сплава согнуть и в напряженном состоянии погрузить в коррозионную среду, то на растянутом слое (внешний) через относительно короткое время возникнут трещины (рис. 1), а внутренний сжатый слой будет оставаться без изменений. Растягивающие усилия особенно опасны, так как в этом случае металл повышает свою активность.

Рисунок 1 — Коррозия пластинки в напряженном состоянии

Если согнутую упруго пластинку (см. рис. 1) термически обработать и упругие деформации перейдут в пластические (явление релаксации), то разности потенциалов не возникает. Таким образом, при изготовлении деталей и узлов машин для снятия остаточных напряжений всегда следует термически обрабатывать изделия, если эти изделия предназначены для работы в сильно коррелирующих средах.

С этой целью в ИПСМ РАН при изготовлении тонких листов СМК — сплава ВТ6, полученных изотермической прокаткой, для более полного снятия остаточных напряжений и формирования зеренной структуры применяется крип-отжиг, который заключается в следующем: листы укладываются стопой между плоскими бойками и прижимаются под давлением 3-5 МПа при температуре 550 ?С. После 20 мин выдержки нагрев выключается, и пакет остывает вместе со штамповым блоком в течение 12 часов.

Особенности взаимодействия титана с воздухом.

Воздух, представляющий собой смесь различных газов, является сложной газовой фазой, воздействие которой на титан может быть весьма многообразным. При этом взаимодействие титана с кислородом воздуха отличается от взаимодействия титана с чистым кислородом, так как на это взаимодействие оказывает влияние азот и другие составные части воздуха. Вместе с тем следует иметь в виду, что при всей сложности газовой фазы (воздуха) воздействие ее на титан следует рассматривать прежде всего как реакцию взаимодействия с ним самой активной и довольно значительной по количеству составляющей – кислорода.

Взаимодействие титана с кислородом.

При взаимодействии титана с кислородом происходит образование различных фаз химических соединений и твердых растворов.

При достаточно низких температурах взаимодействие титана с кислородом ограничивается адсорбцией. Начальная теплота адсорбции кислорода на титане при 25ОС составляет 989 кДж/моль; начальный коэффициент прилипания равен 1;0,8 и 0,67 при температурах -196; 25 и 300ОС соответственно. При дальнейшем взаимодействии на поверхности титана образуется оксидная плёнка.

В соответствии с термодинамическими расчетами оксидная пленка на титане должна состоять из слоев оксидов в последовательности:

Ti6O®Ti3O®Ti2O®Ti3O2®TiO®Ti13O5®TiO2

В действительности при окислении титана при температурах ниже 300OС оксидные слои состоят в основном из Ti3O5, при окислении в интервале температур 400-800OС образуется преимущественно рутил TiO2, а при температурах выше 800OС обнаружены оксиды TiO и Ti2O3. Согласно работе, окисление титана на воздухе и в кислороде до температур Ј 600-650°С сопровождается образованием на образцах тонких оксидных пленок толщиной »0,1 мкм. Долей кислорода, растворенного в металлической основе при температурах ниже 450-500°С, по-видимому, можно пренебречь.

В работе [5] взаимодействие титана с кислородом описано следующим образом. Через возникающую на первых стадиях процесса пленку двуокиси титана TiO2 осуществляется диффузия кислорода к границе раздела пленка-металл, где происходит химическая реакция и дальнейший рост толщины пленки. Слой низших окислов титана, который должен присутствовать между слоем двуокиси и металлом, оказывается очень тонким и обычно не влияет на характер окисления. Скорость диффузии ионов титана через пленку по сравнению со скоростью диффузии титана очень мала. Однако при повышении температуры диффузия титана несколько увеличивается.

При небольшой продолжительности процесса, когда толщина пленки еще невелика, количество поступающего через пленку кислорода оказывается достаточным для окисления всего титана до двуокиси его. Вместе с тем по мере увеличения толщины пленки количество поступающего в зону кислорода уменьшается, а поступление титана остается постоянным, так как реакция происходит на границе раздела пленка-металл. В результате этого при достижении определенной толщины слоя окалины соотношение количеств титана и кислорода в зоне реакции становится таким, что между TiO2 и металлом образуется слой TiO. Появление его ослабляет сцепление окалины с металлом, которая под действием сжимающих напряжений деформируется и отслаивается, обнажая поверхность металла и обеспечивая скачкообразное увеличение скорости окисления. Однако возросшее поступление кислорода при отслаивании окалины приводит к окислению TiO до TiO2 и описанный выше процесс повторяется.

Газонасыщение титановых сплавов при окислении

Взаимодействие титана с кислородом сопровождается двумя параллельно идущими процессами: образованием оксидов и растворением кислорода в металлической основе.

При температурах ниже 8820С и нормальном давлении титан имеет гексагональную плотно упакованную решетку — a-Ti. Решетка a-Ti содержит четыре октаэдрических поры радиусом 0,414 rат.(0,60A) и восемь тетраэдрических пор радиусом 0,225 rат.(0,36A). Экспериментально установлено, что кислород, атомный радиус которого равен 0,60A растворяется в октапорах. Выше 8820С структура титана характеризуется объемноцентрированной решеткой — b-Ti. Решетка b-Ti содержит шесть октапор радиусом 0,115 rат.(0,22A) и двенадцать тетрапор радиусом 0,29rат.(0,41), то есть тетраэдрические пустоты в ОЦК-структуре более просторны. С позиций геометрии решеток a- и b-Ti растворение кислорода более благоприятно в высокотемпературной модификации.

В образовавшемся диффузионном слое выделяют альфированный и переходный слои. Альфированный слой отличается по структуре от основного металла повышенным содержанием a-фазы, что легко оценивается металлографическим анализом, часто этот слой представлен одной a-фазой. Переходный слой по микроструктуре не отличается заметно от основного металла, но его наличие и глубину проникновения можно оценить по более высокой микротвердости по сравнению с основным металлом.

Рисунок 2-Зависимость коэффициентов диффузии кислорода от температуры:

в a-титане; 2- в b-титане.

Газонасыщение поверхности титанового сплава ВТ6.

В работе [6] проводилось исследование влияния газонасыщения на структуру и свойства титанового сплава ВТ6 на воздухе и в вакууме при температурах от 750 до 12000С и выдержках 5,30,60,180 и 360 минут.

Изменение микротвердости от поверхности вглубь образца в зависимости от температуры и времени выдержки представлено на рис 3. Микротвердость снижается от поверхности внутрь образца при всех режимах газонасыщения.

Рисунок 3 — Зависимость микротвердости титанового сплава ВТ6 от расстояния до поверхности после нагрева на воздухе в течение 1(а), 3(б) и 6(в)ч при 750(1), 950(2), 1050(3), 1200°С(4).

Нагрев сплава ВТ6 при сравнительно невысоких температурах 750-8000С в течение 1ч приводит к повышению поверхностной микротвердости от H300 до H400. Увеличение температуры и времени выдержки значительно интенсифицирует процесс газонасыщения вследствие увеличения скорости диффузии, в результате поверхностная микротвердость сильно повышается (рис.3). Так, увеличение времени выдержки от 1 до 6ч приводит при различных температурах к увеличению поверхностной микротвердости на H100-200.

При повышении температуры и увеличении времени выдержки увеличивается глубина газонасыщенного слоя (рис.4). Газонасыщенный слой формируется практически при выдержке в течение 1ч, а дальнейшее увеличение продолжительности газонасыщения мало влияет на глубину поверхностного газонасыщенного слоя.

Рисунок 4 — Изменение глубины газонасыщенного слоя при различных температурах в зависимости от времени выдержки.

В работе [7] рассмотрены особенности газонасыщения титанового сплава ВТ6, которые заключаются в следующем. После выдержки при высокой температуре и последующего охлаждения на воздухе у сплава ВТ6 образуются трещины, которые выходят на поверхность. Причинами их возникновения являются внутренние напряжения и пониженная пластичность особо хрупкого газонасыщенного слоя. Фазовый состав и свойства поверхностного слоя резко отличаются от состава и свойств основного металла. В частности, температура полиморфного превращения этого слоя значительно выше, объемный эффект превращения меньше, а коэффициент линейного расширения больше, чем у основного металла. В результате при охлаждении внутренние части заготовки претерпевают меньшую температурную усадку и принудительно растягивают поверхностный слой. Возникающие при этом растягивающие напряжения в совокупности с пониженной пластичностью газонасыщенного слоя приводят к образованию трещин. При послойном измерении микротвердости после газонасыщенной зоны повышенной твердости идет небольшой участок, граничащий с основным металлом и имеющий по сравнению с ним пониженную твердость. Это объясняется процессами взаимной диффузии газов с поверхности вглубь металла и атомов основного металла и легирующих элементов к границе раздела газ-металл. В результате этого граница раздела металл — газонасыщенный слой оказывается обедненной легирующими элементами и дает пониженную твердость при испытании.

Явление коррозийного растрескивания

В металле, подверженном коррозионному растрескиванию, при отсутствии внешних напряжений обычно происходит очень незначительное коррозионное разрушение, а при отсутствии коррозионной среды под воздействием напряжений почти не происходит изменения прочности или пластичности металла. Таким образом, в процессе коррозионного растрескивания, т. е. при одновременном воздействии статических напряжений и коррозионной среды, наблюдается существенно большее ухудшение механических свойств металла, чем это имело бы место в результате раздельного, но аддитивного действия этих факторов. Коррозионное растрескивание является характерным случаем, когда взаимодействует химическая реакция и механические силы, что приводит к структурному разрушению. Такое разрушение носит хрупкий характер и возникает в обычных пластичных металлах, а также в медных, никелевых сплавах, нержавеющих сталях и др. в присутствии определенной коррозионной среды. При исследовании процесса хрупкого разрушения в результате коррозионного растрескивания особое значение имеет исследование раздельного воздействия на металл напряжений и коррозионной среды, а также их одновременное воздействие. Однако в процессе коррозионного растрескивания первостепенное значение имеют следующие стадии: 1) зарождение и возникновение трещин и 2) последующее развитие коррозионных трещин. Обе стадии, как будет показано ниже, являются индивидуальными ступенями в процессе коррозионного растрескивания.

Средами, в которых происходит коррозионное растрескивание металлов, являются такие среды, в которых процессы коррозии сильно локализованы обычно при отсутствии заметной общей поверхностной коррозии. Интенсивность локализованной коррозии может быть весьма значительной, в результате чего прогрессирует процесс развития очень узких углублений, достигая, вероятно, наибольшей величины на дне углублений, имеющих радиусы порядка одного междуатомного расстояния.

При воздействии на материал коррозионной среды, которая влияет на склонность сплава к коррозионному растрескиванию и характер разрушения, основными факторами являются следующие:

1) относительная разность потенциалов микроструктурных фаз, присутствующих в сплаве, что вызывает вероятность местного разрушения

2) поляризационные процессы на анодных и катодных участках

3) образование продуктов коррозии, которые оказывают влияние на коррозионный процесс.

Для того чтобы произошел процесс коррозионного растрескивания, необходимо наличие поверхностных или внутренних растягивающих напряжений. Обычно встречающиеся на практике разрушения обусловлены наличием остаточных напряжений, возникающих, при производстве и обработке металла, но в целях исследования не следует делать разграничения между остаточными напряжениями и напряжениями, возникшими в результате приложенных внешних нагрузок. Коррозионное растрескивание никогда не наблюдалось в результате действия поверхностных сжимающих напряжений; наоборот, сжимающие поверхностные напряжения разрушения могут использоваться для защиты от коррозионного растрескивания.

При увеличении величины приложенных напряжений уменьшается время до полного разрушения металла. Для коррозионного растрескивания обычно необходимы высокие напряжения, приближающиеся к пределу текучести, однако, часто разрушение может наступить и при напряжениях, значительно меньших предела текучести. Для многих систем сплавов наблюдается какой-то «порог» или «предел» напряжений, т. е. напряжения, ниже которых коррозионное растрескивание не происходит за определенный период времени. Такая зависимость, наблюдавшаяся, например, при замедленном растрескивании сталей, указывает, что основную роль в процессе разрушения играют напряжения.

Наиболее эффективный метод повышения устойчивости металлов против коррозионного растрескивания состоит в использовании соответствующих конструктивных мероприятий и способов обработки, сокращающих до минимума величину остаточных напряжений. Если остаточные напряжения неизбежны, успешно может быть применена термообработка, снимающая эти напряжения. Если позволяют условия, может быть использована, например, дробеструйная обработка, вызывающая сжимающие поверхностные напряжения, которые впоследствии дают возможность нагружать материал, не вызывая напряженного состояния поверхности. Одним из методов, который получает все большее признание и который связан с электрохимическим фактором процесса растрескивания, является применение катодной защиты.

Защита конструкций и машин, выполненных из титана и его сплавов, от коррозии

Защита конструкций выполненных из титана и его сплавов от коррозионного разрушения состоит из целого комплекса мероприятий по увеличению работоспособности и надежности данных конструкций и машин в коррозионной среде. Часть этих мер закладывается еще в процессе проектирования, часть — в процессе изготовления машин или конструкций, а остальные меры должны быть приняты в процессе эксплуатации.

1) Создание рациональных конструкций. Выбор материалов и их сочетаний для данного изделия, конечно, диктуется технической и экономической целесообразностью, но должен обеспечивать его коррозионную устойчивость. Конструктор должен предусмотреть рациональные формы частей машины, допускающие быструю очистку от грязи; машина не должна иметь мест скопления влаги, которая является возбудителем коррозии.

2)Обработка окружающей среды. Для разных видов коррозионных процессов обработка среды принимает различные формы. Сюда можно отнести удаление или снижение концентрации веществ, вызывающих или ускоряющих коррозионные процессы, а также введение замедлителей или ингибиторов коррозии.

Так, например, высокотемпературная газовая коррозия происходит главным образом за счет кислорода воздуха или других окисляющих сред, удалить кислород из которых нельзя, так как это нарушит работу машин (двигателей) или конструкций (оболочки, плоскости и т. д.). Поэтому обработка сводится только к удалению катализирующих веществ или веществ, наличие которых приводит к нарушению устойчивых оксидных слоев, пассивирующих металл.

На устойчивость оксидных слоев вредно влияет наличие галогенов, образующих летучие соединения. Поглощение галогенов или изменение состава окислительной среды (без галогенов) значительно повышает устойчивость металлических поверхностей.

К обработке среды можно в полной мере отнести и общие мероприятия по сохранению окружающей среды, требующие очистки промышленных и выхлопных газов, так как увеличение содержания в воздухе SO2, CO2, оксидов азота и других газов не только пагубно действует на окружающую природу, но и форсирует разрушение металлических конструкций в результате атмосферной коррозии, особенно в больших городах и вблизи промышленных предприятий.

В приборостроительной практике при герметизации схем обычно заменяют воздух на гелий или аргон высокой чистоты, что вообще исключает коррозию. Если есть возможность, то создается вакуум 1,33 • 10-2 — 1,33 • 10-3 Па. При необходимости сообщения приборного устройства с атмосферой и невозможности герметизации его ставят поглотители, сорбирующие влагу и диоксид углерода из воздуха и тем самым снижают возможность появления коррозионных пар.

3)Создание защитных покрытий. Цель их нанесения – предотвратить непосредственный контакт поверхности металлов, сплавов с агрессивными компонентами среды (Н2O, О2, Н+, NOx, SO2. SO3 и т.д.) Такие покрытия не только обеспечивают защиту от коррозии, но и сообщают изделиям эстетические качества (декоративность). Защитные покрытия должны быть более устойчивы к коррозии, чем защищаемые металлы. Такие покрытия должны быть сплошными, хорошо удерживаться на металлической основе (хорошая агдезия).

Важнейшие марки диоксида титана, применение, производители

Особенности возникновения гальванических пар

Одной из проблем при использовании изделий из титана может стать возникновение процесса электрохимической коррозии. Есть несколько основных случаев, при которых могут появляться коррозийные гальванические пары:

  • Соприкосновение с электролитом. Это актуально в том случае, если применяется два металла разного типа. Они могут находиться в скрепленном друг с другом состоянии. Также есть большая вероятность того, что коррозия титана станет сильнее, если есть контакт между металлами с разным уровнем активности.
  • При контакте металлов с материалами, выступающими в качестве полупроводника. При этом у свободного металла может накапливаться отрицательный заряд, который в соединении становится положительным.
  • Накапливание в воздухе электролита или контакт с ним в растворе. Электрохимическая коррозия титана в таком состоянии может стать еще более быстрой и интенсивной.

Стоит также обратить внимание на то, в какой ситуации используется металл. В ряде случаев для обеспечения оптимальной защиты, можно будет просто изменить условие эксплуатации или устранить потенциально-опасное соседство.

Физические и механические свойства

Титан является довольно тугоплавким металлом. Температура его плавления составляет 1668±3°С. По этому показателю он уступает таким металлам, как тантал, вольфрам, рений, ниобий, молибден, тантал, цирконий. Титан – это парамагнитный металл. В магнитном поле он не намагничивается, но не выталкивается из него. Изображение 2 Титан обладает низкой плотностью (4,5 г/см³) и высокой прочностью (до 140 кг/мм²). Эти свойства практически не меняются при высоких температурах. Он более чем в 1,5 раза тяжелее алюминия (2,7 г/см³), зато в 1,5 раза легче железа (7,8 г/см³). По механическим свойствам титан намного превосходит эти металлы. По прочности титан и его сплавы располагаются в одном ряду со многими марками легированных сталей.

По стойкости к коррозии титан не уступает платине. Металл обладает отличной устойчивостью в условиях кавитации. Пузырьки воздуха, образующиеся в жидкой среде при активном движении титановой детали, практически не разрушают её.

Это прочный металл, способный сопротивляться разрушению и пластической деформации. Он в 12 раз твёрже алюминия и в 4 раза — меди и железа. Ещё один важный показатель – это предел текучести. С увеличением этого показателя улучшается сопротивление деталей из титана эксплуатационным нагрузкам.

В сплавах с определёнными металлами (особенно с никелем и водородом) титан способен «запоминать» форму изделия, созданную при определённой температуре. Такое изделие потом можно деформировать и оно надолго сохранит это положение. Если же изделие нагреть до температуры, при которой оно было сделано, то изделие примет первоначальную форму. Называют это свойство «памятью».

Теплопроводность титана сравнительно низкая и коэффициент линейного расширения соответственно тоже. Из этого следует, что металл плохо проводит электричество и тепло. Зато при низких температурах он является сверхпроводником электричества, что позволяет ему передавать энергию на значительные расстояния. Также титан обладает высоким электросопротивлением. Чистый металл титан подлежит различным видам обработки в холодном и горячем состоянии. Его можно вытягивать и делать проволоку, ковать, прокатывать в ленты, листы и фольгу с толщиной до 0,01 мм. Из титана изготавливают такие виды проката: титановая лента, титановая проволока, титановые трубы, титановые втулки, титановый круг, титановый пруток.

Основы защиты титана от развития коррозии

Существует несколько наиболее распространенных средств, которые позволяют сильно уменьшить опасность устранения защитной пленки на поверхности материала.

Есть несколько наиболее распространенных методов:

  • Рационализация строения конструкции. Нужно обратить внимание на то, где именно используется деталь, есть ли потенциально-опасное соседство, которое может стимулировать появление процесса электрохимической коррозии. Лучше всего, чтобы строение изделия было таким, чтобы его можно было быстро и без проблем очистить от скопившейся грязи и различных потенциально-опасных веществ.
  • Работа с окружающей средой. Нужно обратить внимание на то, опасна ли среда, в которой используется изделие из титана. Можно повлиять на среду с использованием различных типов добавок. Так растворы кислот и щелочей можно сделать менее агрессивными, нарастить длительность использования без потенциальных внешних проблем.
  • Нанесение на материал специального защитного покрытия. Главное, что обеспечивает такое покрытие – недопущение контакта металла с агрессивными средами и катализаторами окисления. Необходимо обратить внимание на то, чтобы на протяжении всего времени эксплуатации такое покрытие сохраняло свою равномерность и целостность. В случае необходимости, такое покрытие можно дополнительно обновить.

Наша компания обеспечивает предоставление услуг по качественной защите материала от коррозии. Мы готовы ответить на все интересующие клиентов вопросы, а также быстро подготовить все, что нужно для устранения потенциальных рисков окисления в процессе использования продукции из титана.
Вернуться к статьям Поделиться статьей

Виды оксидирования

Сегодня используется большое количество видов. Они представлены следующими категориями:

  • Анодное оксидирование

Этот вид является достаточно распространенным. Он представляет собой образование на металле оксидной пленки для предотвращения появления коррозии методом их поляризации их анодов в среде, которая создается при помощи подключения электрического тока. Данный метод применяется для таких металлов, как алюминий, магний, титан.

  • Микродуговое оксидирование

Данная процедура заключается в том, что оксиды многих метало, которые были получены методом электрохимического окисления, подвергаются химической модификации с использованием электрического тока. Благодаря периодически возникающим электрическим импульсам на поверхности металлов появляется плотная пленка, которая служит надежной защитой от появления коррозии. Данная процедура носит еще одно название плазменно-электролитическое оксидирование. Оно используется лишь на небольшом количестве предприятий.

  • Холодное оксидирование

Эта процедура применяется только по отношению к стальным материалам разного типа. Ее еще называют чернением.

  • Щелочное оксидирование


Сегодня не редко для обработки металлов используется щелочная среда. Для проведения данного процесса идеально подходят поверхности из стали. Технология проведения щелочного оксидирования предусматривает изготовление щелочной среды для того, чтобы при взаимодействии с металлом на его поверхности в результате взаимодействия образовалась оксидная пленка.

  • Низкотемпературное оксидирование

Данный вид процесса образования оксидной пленки является нейтральным. В процесс используется метод нагревания до невысоких температур, что обеспечивает покрытие металла слабой оксидной пленкой.

  • Электрохимическое оксидирование

Этой процедуре подвергаются разные виды металлов. Металлы погружаются в среду электролита.

Таблица 2. Составы растворов для декапирования.

Декапирование алюминия и его сплавовТемператураВремя обработки
Состав 1 :
Азотная кислота 10-15% раствор (по объему)20°С5-15 с

Таблица 3. Составы растворов для окрашивания алюминия в черный цвет.

Для окрашивания в черный цвет:г/л (воды)Температура и время обработки
Состав 1:
Молибдат аммония = молибденовокислый аммоний = ammonium molybdate = парамолибдат аммония= (NH4)6Mo7O2410-2090-100°С / 2-10 мин
Хлорид аммония = хлористый аммоний = NH4Cl5- 15

Таблица 4. Составы растворов для окрашивания алюминия в серый цвет.

Для окрашивания в серый цвет:г/л (воды)Температура и время обработки
Состав 1:
Оксид мышьяка (III) = триокись мышьяка = трехокись мышьяка = arsenic trioxide As2O370-75Кипение / 1-2 мин
Кальцинированная сода = карбонат натрия = натрий углекислый . Химическая формула, Na2CO370-75

Таблица 5. Составы растворов для окрашивания алюминия в зеленый цвет.

Для окрашивания в зеленый цвет:г/л (воды)Температура и время обработки
Состав 1:
Ортофосфорная кислота40-5020-40°С / 5-7 мин
Кислый фтористый калий = калий бифторид = калий гидрофорид = kalium bifluoratum = potassium bifluoride = kaliumbifluorid = KHF23-5
Хромовый ангидрид = оксид хрома(VI) = трёхокись хрома = CrO3 (весьма химически активное вещество, способен вызвать при соприкосновении с органическими веществами возгорания и взрывы)5-7

Таблица 6. Составы растворов для окрашивания алюминия в оранжевый цвет.

Для окрашивания в оранжевый цвет:г/л (воды)Температура и время обработки
Состав 1:
Хромовый ангидрид = оксид хрома(VI) = трёхокись хрома = CrO3 (весьма химически активное вещество, способен вызвать при соприкосновении с органическими веществами возгорания и взрывы)3-520-40°С / 8-10 мин
Фторсиликат натрия = кремнефтористый натрий = Na2SiF63-5
Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]