Шнек своими руками чертежи расчеты. Расчет и построение развертки спирали шнека


Развертка поверхности прямого кольцевого винтового коноида

Рассмотрим прямой геликоид, который образован движением прямолинейной образующей NM

по двум направляющим (цилиндрической винтовой линии и ее оси), причем во всех положениях образующая составляет с осью прямой угол и остается параллельной плоскости параллелизма (на рис.1 — горизонтальной плоскости).

Приближенная развертка одного витка представляет собой часть плоского кольца, заключенного между двумя концентрическими дугами (рис 2).

Рисунок 1

Рисунок 2

Длина L

большой дуги равна длине одного витка внешней винтовой линии; длина
l
меньшей дуги равна длине витка внутренней винтовой линии. Радиусы дуг
R 1 и r 1
и угол выреза
α
могут быть определены графически и аналитически.

Аналитический способ

Обозначим ширину винтовой поверхности b, причём b = D-d/2

Формула 1

Так как винтовые линии развертываются в две концентрические дуги при одном и том же центральном угле, а такие дуги относятся друг к другу как радиусы, то

Формула 2

Угол выреза α

определяется из пропорции:

Формула 3

Графический способ

Величины r 1

,
R 1
и
α
могут быть определены графическим построением (2 рис.б). Строим прямоугольные треугольники
АВС
и
ЕВС
, у которых катет
ВС = s = 48
мм, а
катеты АС
и
ЕС
равны длинам окружностей
πD
и
πd
. Величины πD и
πd
вычисляются или определяются следующим построением: проводим прямую
Оа
(б — правый нижний рисунок) под углом 30° к вертикальному диаметру до пересечения в точке а с касательной, проходящей через нижний конец того же диаметра. От точки а откладываем на касательной длину трех радиусов и полученную точка b соединяем с верхним концом диаметра. Отрезок bc равен половине длины окружности.

Гипотенузы построенных треугольников выражают длины развернутых винтовых линий L

и
l
. Для построений длины
r 1
откладываем на
АВ
от точки
А
отрезок
AF = l
и от точки
В
отрезок
ВК = b
. Соединяем точки
F
и
Е
прямой
E
F и через точку
К
проводим прямую
KN ||EF
до пересечения с
BE
в точке
N
. Тогда отрезок
BN = r 1 = 14 мм
. (Действительно, из подобия треугольников
BEF и BNK
следует, что BN/BE = BK/BF. Но
BN = r 1, BE = l, BK = b; BF = L — l
. Отсюда r
1 = bl/(L — l)
.

Радиус R 1 = r 1 + b = 14 + 15 = 29

мм. Его можно найти и непосредственно построением, если через точку
N
провести прямую
NM || AC
до пересечения с
АВ
. Тогда отрезок
ВМ = R 1 = 29 мм.
Для построения угла выреза α откладываем на окружности радиуса R 1 разность между длиной окружности 2π R 1

и длиной дуги
L
, равную 18 мм, и концы отложенной дуги соединяем с центром.

При больших значениях D, d и s

выполнение вышеописанных построений в натуральную величину затруднительно. В таком случае следует пользоваться аналитическим способом или выполнять построения в уменьшенном масштабе, что снижает точность результата.

Выкроив из листа требуемое количество отдельных витков, можно образовать из них винтовую поверхность. Для присоединения витков к поверхности цилиндра диаметром d, на последней прочерчивают винтовую линию заданного шага s. Способы присоединения и соединения витков зависят от принятой технологии.

Развертка поверхности прямого винтового коноида переменной ширины

В данном случае внутренняя направляющая винтовая линия расположена на конусе, ширина поверхности коноида непрерывно изменяемая от максимальной величины b до минимальной b1.

Рисунок 3

Горизонтальная проекция внешней винтовой линии (цилиндрической) является окружностью, а проекция внутренней винтовой линии (конической) представляет собой спираль Архимеда.

Для построения развертки определяют предварительно величины R 1 и α

(формулы 1 — 3). Чертят окружность радиусом
R 1
и наносят на ней центральный угол α. Полученную дугу, длина которой равна
L
, делят на несколько равных частей (на рис. 3 на 12) и проводят радиусы через точки деления. На радиусах откладывают последовательно длины отрезков 0 —
01; 1 — 11; 2 — 22
и т.д., взятые с горизонтальной проекции, где они изображаются в натуральную величину. Таким образом, получают ряд точек —
11; 21; 31;…121
, соединяемых плавной кривой.

Расчет пера винтового конвейера или шнека

Для пользователей КОМПАС-3D

задача значительно упрощается, т к существует бесплатная библиотека
«Перо шнека», выполняющая все за вас. Вам остается только ввести исходные данные и получить готовый чертеж или 3D-модель. Я понимаю, что халява разжижает мозги, но значительно сокращает затраченное время.
В результате у вас появится нечто подобное. Заполняем форматку, добавляем парочку тех. и этих требований и выдаем в производство.

Библиотека «Перо шнека» находится в свободном доступе и ее можно скачать в интернете. Кстати, она подходит ко всем версиям КОМПАС-3D, включая последнюю. Копируем файлы в папку с библиотеками ASCON/KOMPAS-3D V16/Libs/

и подключаем ее. В противном случае все считать придется самим.

Итак.

Дано

. Для винтового конвейера диаметром
D
с заданным диаметром вала
d
и шагом
S
(рис. а) необходимо изготовить перья размером
Do, do
и
αо
(рис. б). Будучи натянутыми на вал диаметра
d
при заданном шаге
S
, они должны образовать винт диаметром
D
. Для этого нужно, чтобы Do и do соответственно были несколько больше D и d, так как при растяжении навивки из перьев их диаметр несколько уменьшается.

Длина дуг L и l

выражается через их радиусы и угол (рад):
L = α·Do/ 2;l = α·do/ 2;
Отсюда:
Do = 2·L / αdo = 2·l / α
При навивании перьев на вал эти дуги образуют винтовые линии: дуга I по валу диаметром d, а дуга L по воображаемому цилиндру диаметром D, равным диаметру винта.

Развертку винтовой линии можно представить в виде прямоугольного треугольника, у которого один катет равен шагу S, а другой — длине окружности, на которую навита винтовая линия, т. е. πD (рис. в).

Таким образом, можно записать следующие зависимости:
l = √S² + (πd)²L = √S² + (πD)²
С достаточной для расчета точностью D — d = Do — do, так как обе части примерно равны 2d. Подставляя значения этих параметров, получим
D — d = 2L / α — 2·l / α
Отсюда
α = 2(L — l) / D — d
Зная α, L и l, находим Do и do по выше приведенным формулам

Значение αo (град) будет
αo = (2π — α)·57,3
Таким образом можно найти необходимые размеры Do, do н αo, чтобы сделать шаблон, по которому можно изготовить перья для данного винтового конвейера. Для соединения перьев между собой следует на нх концах сделать припуск, равный 5…10 мм в зависимости от способа их соединения.

Конусные шнеки обычно используются для уплотнения перемещаемого материала, поэтому, в основном, их изготавливают литыми, где и задается угол конуса и изменение шага витка. Если изготовливается из листа, сначала создается масштабная модель. Можно методом интегрирования контура пера, кому что проще.

Кому этой информации недостаточно, например необходимо подобрать оптимальные параметры шнека, найдите книгу Григорьев А.М. Винтовые конвейеры

М., «Машиностроение». 1972, 184 стр.

В книге рассмотрены примеры применения винтовых конвейеров, особенности их эксплуатации и применяемые методы их расчета. Изложены теория движения изолированной материальной точки в винтовом конвейере и рекомендации по распространению этой теории на сплошной поток транспортируемого материала. Даны новые аналитические методы расчета и примеры проектирования высокопроизводительных и экономичных винтовых конвейеров. Книга предназначена для инженерно-технических работников, занятых исследованием, расчетом, конструированием, производством и эксплуатацией конвейеров.

Или зарубежную книгу Технология изготовления спиралей шнеков. Гевко Б М

— Львов: Вища шк Изд-во при Львов, ун-те, 1986.- 128 с. В монографии изложена новая технология формообразования спиралей шнеков методом холодной навивки, прокатки и штамповки. Эта технология способствует повышению точности обработки деталей, снижению материалоемкости изделий, повышению производительности труда в машиностроении и приборостроении. Разработки автора введены в нормали Министерства тракторного и сельско-хозяйственного машиностроения и используются на предприятиях отрасли.

Есть конечно и другие книги. «Шукайте», как сказал бы автор последней…

Развертка поверхности косого винтового геликоида

В данном случае, каждая образующая поверхности остается параллельной соответствующей образующей некоторого соосного конуса вращения с углом при вершине равным

, который называется направляющим конусом.

Рисунок 4

Графический способ

Для построения развертки одного витка данной поверхности разбивают горизонтальную проекцию на равные части (например, на 12) и принимаю каждую из них за равнобокую трапецию.

Боковые стороны всех трапеций равны. Натуральную величину их дает фронтальная проекция 0′ – 0’1 = b

— ширине поверхности.

Величина b может быть вычислена по формуле b = R — r/sinα

.

Две другие стороны, например 0 — 1 и 01

— 11, равны соответственно
1/12 L и 1/12 l
, где
L и l
— длины одного оборота внешней и внутренней винтовых линий. Для построения трапеции необходимо знать еще длину её диагонали, например
0 — 11
. Определив любым известным способом истинную длину диагонали по её проекциям (
011 и 0’1’
1), строим приближенную развертку, как ряд примыкающих один к другому равных треугольников (рис. 4, б). Каждый треугольник строится по трем известным сторонам. Затем вершины треугольников обводятся плавной кривой.

Аналитический способ

Основан на изгибании поверхности косого геликоида на однополостный гиперболоид вращения, поверхность которого затем заменяется усеченным круговым конусом. Размеры развертки одного витка (рис. 4, в) определяется по формулам:

Формула 4

Развертка винтовой поверхности переменного шага

В рассмотренных выше примерах внешняя и внутренняя винтовые направляющие данных поверхностей имели один и тот же шаг. Для увеличения угла подъема внешней винтовой направляющей увеличивают её шаг. Таким образом, винтовые направляющие имеют в этом случае разные шаги S и s, и сама поверхность называется винтовой поверхностью с переменным шагом.

На рис. 5 даны проекции ¼ полного оборота такой винтовой поверхности. Один конец образующей движется по винтовой линии шага S и радиуса R, а другой — по винтовой линии шага s и радиуса r.

При этом угол, под которым образующая пересекает вертикальную ось, уже не остается постоянным и отрезки образующей, заключенные между направляющими так же не равны между собой. Минимальная длина этих отрезков l0 = 001 = R — r

; максимальная (l4) равна гипотенузе прямоугольного треугольника, одним катетом которого является фронтальная проекция
4′ – 4’1,
а другим — горизонтальная проекция того же отрезка, т.е.

Рисунок 5

Построение приближенной развертки для ¼ полного витка произведено тем же способом, что и в предыдущем примере, но в данном случае приходится определять истинную длину каждой боковой стороны заменяемых трапециями отсеков поверхности и каждой диагонали. Это выполнено на рисунке 5 построением прямоугольных треугольников по известным из начертательной геометрии приемам.

Что касается двух других сторон всех отсеков, то они, как и в предыдущем примере, равны L/n

и
l/n, где n
— принятое число делений одного оборота винтовых направляющих (в данном случае
n = 16
). Величины
L и l
определяются как указано выше (по формулам 2).

По материалам: «Технические развертки изделий из листового металла» Н.Н. Высоцкая 1968 г. «Машиностроение»

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на https://www.allbest.ru/

Расчет и построение развертки спирали шнека

1.
Расчет развертки спирали шнека с постоянным шагом
H — шаг спирали;

D 0 -наружный диаметр спирали шнека;

d 0 -внутренний диаметр спирали шнека;

D — наружный диаметр развертки спирали шнека;

d — внутренний диаметр спирали шнека;

б — угол выреза развертки спирали шнека;

2.
Построение спирали шнека с изменяемым шагом по геометрической прогрессии
Можно построить коническую спираль с определенным уклоном где

Все набирается в Microsoft Office Excel и строится в КОМПАС-3D c помощью сплайна.

3.
Расчет развертки спирали шнека с изменяемым шагом по геометрической прогрессии
Вычисляется от определенных углов (радиан) с установленным интервалом, для построения развертки. Для удобства можно набрать Microsoft Office Excel.

Я, не смог проинтегрировать данную функцию, для подсчета на определенном интервале от, поэтому выполнил графоаналитическим способом, куда вставил готовый шаблон: «Sqrt (315^2+(200/2/PI*(1 — (1/1.1)^(x/2/PI))/(1-1/1.1))^2)/(315-250)*(1-Sqrt((2*PI*250)^2+(200*(1/1.1)^(x/2/PI-1))^2)/Sqrt((2*PI*315)^2+(200*(1/1.1)^(x/2/PI-1))^2))», где

После построения графика абсцисса разбивается на интервалы (радиан) в соответствии вычисленным радиусам развертки. Определяете площади интервалов, ограниченные функцией. Площади S1, S2…, есть величины углов раствора (радиан) между

спираль шнек развертка

Размещено на Allbest.ru

Подобные документы

    Технічні вимоги до виготовлення деталі «Палець шнека»: точність розмірів, матеріал деталі і його хімічні та механічні властивості; аналіз технологічності і конструкції, якісна та кількісна оцінки. Тип виробництва, метод одержання заготовки, обладнання.

    курсовая работа , добавлен 13.03.2011

    Описание конструкции привода. Расчет зубчатых передач редуктора. Определение допускаемых контактных напряжений и напряжений изгиба. Определение основных параметров цилиндрических передач. Проверочный расчет подшипников на быстроходном и тихоходном валу.

    курсовая работа , добавлен 19.12.2011

    Определение материала развертки по маркировке. Измерение угла режущей части при помощи угломера Бабчиницера. Перечень свойств инструмента, которые обеспечиваются неравномерной разбивкой зубьев. Расчет режимов резания и времени на обработку отверстия.

    практическая работа , добавлен 25.01.2015

    Проектирование и расчет долбяка для обработки зубчатых колес. Разработка комбинированной развертки для обработки отверстий. Расчет и проектирование протяжки для обработки шлицевой втулки. Плавающий патрон для крепления комбинированной развертки.

    курсовая работа , добавлен 24.09.2010

    Основное назначение дозирующего устройства. Метод расчета шнека дозатора зерна, оптимизация его конструктивных, технологических параметров. Упрощенная классификация дозаторов по структуре рабочего цикла, конструктивным признакам, экономические требования.

    курсовая работа , добавлен 01.05.2010

    Осевые режущие инструменты, развертки, их виды, особенности их конструкций, классификация. Формы заточки спиральных сверл. Особенности глубокого сверления. Назначение допусков, основные причины разбивки. Требования к точности конических отверстий.

    контрольная работа , добавлен 23.05.2013

    Предпочтительные числа и их закономерности. Упорядочение выбора величин и градаций параметров производственных процессов. Преимущества и недостатки рядов чисел, построенных по геометрической прогрессии. Программы и планы комплексной стандартизации.

    реферат , добавлен 06.06.2011

    Синтез кулачкового механизма. Построение диаграммы скорости, перемещения, ускорения толкателя. Построение графика изменения угла давления. Синтез эвольвентного зубчатого зацепления. Расчет массы и геометрических параметров маховика, построение графиков.

    курсовая работа , добавлен 05.01.2013

    Технологический анализ конструкции детали. Составление вариантов плана изготовления детали и выбор наиболее целесообразного из них. Определение размеров развертки детали. Расчет полосы для вырубки заготовки. Расчет параметров пружинения материала.

    курсовая работа , добавлен 13.08.2012

    Область применения и современные конструкции электросковородок. Устройство, принцип действия сковороды электрической с непосредственным обогревом, ее теплотехнический расчет. Определение основных конструктивных размеров сковороды, расчет спирали.

Развёртка поверхности витка шнека

Развёртка поверхности прямого кольцевого винтового коноида, может быть выполнена только приближённо, т.к. данная поверхность является не развёртываемой даже теоретически. Длина дуги коноида, которая непосредственно находится на цилиндрической поверхности и внешняя дуга данной поверхности делятся на определённое количество отрезков. Через каждые две точки наружной дуги коноида и внутренней дуги расположенной на поверхности образующего цилиндра и ось цилиндра, проводятся линии, которые разделяют поверхность коноида на секторы, чем больше будет секторов, тем точнее будет построение развёртки. Натуральные длины всех отрезков секторов, определяются с помощью методов начертательной геометрии. Автор попытался вычислить длины всех отрезков одного из секторов поверхности развёртки шнека теоретически. Для расчёта развёртки были взяты данные из поста темы: Наружный диаметр: D=125мм; Внутренний диаметр: d=22 мм; Шаг: H=60мм. Для расчёта, длина окружности образующего цилиндра и наружного, а также винтовые линии внутренняя и наружная, были поделены на 12 частей, т.е. поверхность коноида была разделена на указанное количество секторов. Все построения расчётной схемы, показаны на рисунке:

Ниже показаны все расчётные формулы, по которым выполнялся расчёт.

Все расчёты величин углов выполнялись в радианах, только в конце расчёта величины углов В результате расчёта, получилась вот такая развёртка:

В результате построения развёртки, получили следующие результаты: Длина внешней дуги коноида, равна: L=396.56 мм.; Внутренней дуги, расположенной на образующем цилиндре: l=91.84 мм; Диаметр развёртки внешний: D=133.68 мм.; Диаметр развёртки внутренний: d=30.69 мм. Угол выреза развёртки: 20,59 град. Параллельно, для сравнения, произвёл расчёт по существующему способу: https://razvitie-pu.ru/?page_id=4440

В результате произведённых расчётов, получил следующие результаты: Длина внешней дуги коноида, равна: L=397.256 мм.; Внутренней дуги, расположенной на образующем цилиндре: l=91.525 мм; Диаметр развёртки внешний: D=133.808 мм.; Диаметр развёртки внутренний: d=30.808 мм. Угол выреза развёртки: 19,794 град. Результаты отлично сходятся, разница только в том, что центр секторного выреза, рассчитанного угла развёртки, существующего метода находится в центре внутреннего диаметра развёртки, а построенного мной близок к центру диаметра образующего цилиндра.

1. Необходимый диаметр винта (м)

где Q

— расчетная производительность конвейера [см. (5.1)], т/ч;

k
D
— отношение шага винта к его диаметру: для абразивных материалов
kD
=0,8, для неабразивных
kD
= 1,0;

n в — частота вращения винта, мин -1 ; предварительно принимается по табл. 13.2, затем проверяет­ся по формуле (11.2) и согласовывается с ГОСТ 2037-82 (см. па­раграф 11.2);

ψ- коэффициент заполнения желоба (табл. 11.3);

ρ — насыпная плотность груза, т/м 3 ;

k
β
— коэффициент уменьшения производительности в зависимости от угла наклона кон­вейера (табл. 11.4).

Диаметр винта должен проверяться по формуле (13.1) и согла­совываться с данными табл. 11.1.

2. Необходимая мощность на валу винта (кВт)

Р
0
= 0,0027Q (
L
г
w± Н),
(11.4)

где L

г — длина горизонтальной проекции конвейера, м;

w

— коэффициент сопротивления перемещению груза (см. табл. 11.3);

Н — высота подъема (плюс) или опускания (минус) груза, м.

3. Мощность двигателя для привода винтового конвейера опре­деляется по формуле (8.21). При этом коэффициент запаса прини­мают К= 1,25.

4. Необходимое передаточное число между валом двигателя и валом винта определяется по формуле (8.23).

5. Фактическое передаточное число привода конвейера опреде­ляется после уточнения кинематической схемы конвейера.

6. Фактическая частота вращения винта (мин -1)

где n — частота вращения вала двигателя, мин -1 ;

u ф — фактиче­ское передаточное число привода.

Фактическая частота вращения винта не должна отличаться от ближайшей номинальной частоты по ГОСТ 2037-82 более чем на 10 %.

7. Фактическая производительность конвейера (т/ч)

где S — ход винта, м: при однозаходном винте S
=t
(
t
— шаг вин­та), при двухзаходном винте
S=2t.
Если фактическая производительность отличается от расчетной более чем на 10 %, производится перерасчет конвейера.

8. Крутящий момент на валу винта (Нм)

Т 0 = 9550Р 0 /. (11.7)

9. Осевое усилие на винт (Н)

(11.8)

где k — коэффициент, учитывающий, что сила приложена на сред­нем диаметре винта: А = 0,7…0,8;

D

— диаметр винта, м;

α — угол подъема винтовой линии винта;

β — угол трения груза о винт — см. формулу (4.8) и табл. 4.1.

10. Поперечная нагрузка (Н) на участок винта между двумя опорами

(11.9)

где l

— расстояние между опорами вала винта, м;

L

— общая дли­на вала винта, м.

11. Вал винта рассматривается как разрезной и рассчитывается на скручивание моментом T 0 , растяжение или продольное сжатие силой F OC , изгиб от распределенной по длине l

поперечной нагрузки F п o п ep и изгиб под действием собственного веса на длине
l
.

Прогиб винта не должен превышать 40 % зазора между винтом и желобом.

Развертки-общие сведения.

1.Общие сведения о развертках. Развертывание представляет собой процесс обработки отверстий с целью получения повышенной чистоты и точности. Развертка — это многозубый инструмент, который подобно сверлу и зенкеру в процессе обработки совершает вращение вокруг своей оси (главное движение) и поступательно перемещается вдоль оси, совершая движение подачи. Развертывание позволяет получить отверстие 2—3-го класса точности и 7—8-го класса чистоты обработанной поверхности. 2.Конструкция разверток. 2.1. Основные конструктивные элементы разверток. Ручная и машинная развертка (рис. 1) имеют следующие основные части: рабочую, режущую, калибрующую, шейку, хвостовик. Назначение шейки и хвостовика у разверток такое же, как у сверл и зенкеров. Рабочая часть включает режущую и калибрующую части и направляющий конус, который служит для предохранения от повреждений и облегчения попадания развертки в отверстие.

Рис. 1. Элементы а) машинной и б) ручной разверток. Режущая (заборная) часть развертки представляет собой конус, на поверхности которого образованы зубья. Калибрующая часть состоит из цилиндрического участка и участка с обратной конусностью. Передние и задние поверхности зубьев развертки как на режущей части, так и на калибрующей части, выполняются плоскими. 2.2. Конструктивные элементы развертки: D – диаметр развертки; Z – число зубьев; 2φ – угол режущей части; междузубые канавки, их форма и неравномерная разбивка; профиль зубьев, α и γ – задний и передний углы на режущей части, задний конус, элементы крепления развертки; L – общая длина развертки. 2.2.1.Диаметр развертки– важнейший конструктивный элемент, так как в конечном итоге назначение развертки – дать точное круглое отверстие определенных размеров. При назначении диаметра развертки необходимо учитывать разбивку; запас на износ; допуски на изготовление самой развертки. Для обеспечения входа в отверстие малый диаметр режущей части выполняется меньше диаметра обработанного отверстия на 1,3—1,4 припуска на развертывание. Диаметр развертки в конце режущей части и на цилиндрическом участке калибрующей части выбирается в зависимости от разбивания отверстия при обработке, допуска на изготовление отверстия и стремления обеспечить максимально возможный запас на износ развертки по диаметру. Схема расположения полек допусков на диаметр развертки приведена на рис.2. Схема изображена для случая, когда в процессе развертывания происходит увеличение диаметра отверстия по сравнению с фактическими размерами развертки. Поэтому, для того чтобы получить отверстие в пределах поля допуска, максимальный диаметр развертки принимается равным максимальному диаметру отверстия минус величина максимального разбивания. Допуск на диаметр развертки необходимо выбирать так, чтобы его обеспечение на шлифовальных и доводочных станках не представляло особых затруднений. Величина разбивания отверстия зависит от размеров обрабатываемой заготовки, режимов резания, точности изготовления развертки и точности ее установки на станке и т. п. В некоторых случаях, особенно при обработке изношенными развертками тонкостенных деталей, изготовленных из материалов с повышенной пластичностью и вязкостью, может наблюдаться отрицательное разбивание отверстия. При конструировании разверток ориентировочно максимальная величина разбивания отверстия принимается равной 1/3 допуска на отверстие. Уточненные значения величины разбивания отверстия определяются опытным путем.

Схема расположения полей допусков на диаметр развертки
Рис. 2. Схема расположения полей допусков на диаметр развертки. Диаметр в конце калибрующей части берется меньше диаметра развертки. В результате получается обратный конус. Принято считать, что обратный конус на развертках служит для уменьшения трения развертки об обработанное отверстие, облегчения вывода развертки и предохранения отверстия от разбивания. Для ручных разверток уменьшение диаметра к хвостовику составляет 0,010 — 0,015 мм. Из-за столь малой величины утонения цилиндрический участок у ручных разверток часто не делается, и обратный конус начинается сразу же после режущей части. 2.2.2.Число зубьев. Число зубьев развертки выбирается в зависимости от обрабатываемого материала, диаметра и конструкции разверток. С увеличением числа зубьев чистота обработки отверстий повышается, однако уменьшается поперечное сечение стружечных канавок, и они могут оказаться недостаточными для свободного размещения и отвода стружки. При большом числе зубьев и небольшой глубине канавок перешлифовывание разверток на меньшие размеры затрудняется. Несмотря на снятие небольших слоев металла, развертки имеют относительно небольшое число зубьев (от 6 до 14) для целых машинных и ручных разверток диаметром 3—50 мм. Развертки сборной конструкции делаются с меньшим числом зубьев, так как элементы крепления вставных зубьев требуют соответствующего пространства для их размещения. Развертки обычно имеют четное число зубьев. Это облегчает измерение их диаметра. Положительное влияние на работу развертки оказывает неравномерное распределение зубьев по окружности, что способствует гашению вибраций, возникающих при работе, особенно на повышенных режимах резания в условиях недостаточной жесткости системы СПИД, и повышению чистоты обработанной поверхности. Для окончательного выбора зубьев развертки необходимо прочертить получающийся профиль зуба и канавки. В развертках с винтовыми зубьями число зубьев выбирают меньшим. В зависимости от свойств обрабатываемого материала и вида отделяющейся стружки можно выбирать различное число зубьев. У разверток предназначенных для обработки вязких металлов, число зубьев определяются по формуле z= 1,5 корень от D + 2; для хрупких металлов z = 1,5 корень от D + 4. 2.2.3.Передний угол γ разверток обычно принимается равным нулю, поскольку развертка работает в зоне малых толщин срезаемого слоя, характер протекания процесса резания зависит главным образом не от переднего угла, а от радиуса закругления режущей кромки. На черновых развертках и при обработке вязких материалов передний угол равен 5—10°. 2.2.4.Задний угол принимают небольшим для сохранения прочности режущей кромки. Если принять задний угол значительным, прочность кромки снижается, и возможны выкрашивания, ведущие к ухудшению чистоты поверхности отверстия. У разверток колеблется в пределах 4—8°. Для чистовых разверток угол α выбирается меньше, чем для черновых. 2.2.5.Ширина ленточки по цилиндру. Затачивание зубьев на режущей части производится «доостра», а на калибрующей части — с оставлением цилиндрической ленточки шириной 0,05—0,3 мм. При обработке вязких металлов во избежание налипания частиц металла ширина ленточки уменьшается до 0,05— 0,10 мм. Ленточка служит для направления развертки в отверстии, способствует калиброванию отверстия и облегчает контроль развертки по диаметру. 2.2.6. Угол в плане φ. Большое влияние на работу развертки оказывает угол в плане φ, между осью развертки и режущей кромкой, которая при переднем угле, равном нулю, идет по образующей конуса режущей части. С изменением угла в плане φ изменяется соотношение между шириной и толщиной среза, составляющими усилия резания, интенсивность и характер износа инструмента. С увеличением угла заборного конуса растет осевое усилие, затрудняется продвижение развертки. Поэтому у ручных разверток угол в плане принимается небольшим, что способствует также плавному входу и выходу развертки из отверстия. На основе экспериментальных данных для ручных разверток при обработке сквозных отверстий φ = 1 ÷ 2°. Машинные развертки при работе направляются лучше ручных, поэтому длина их режущей части может быть меньшей, а угол в плане большим. При обработке чугуна φ = 4÷5°, а при обработке стали φ = 12 ÷ 15°. Для глухих отверстий как у ручных, так и у машинных разверток φ = 45 ÷ 60°. Для машинных разверток величина утонения колеблется от 0,04—0,10 мм, при длине калибрующей части равной 0,25—0,30 диаметра развертки. На базе проведенных исследований и производственного опыта в последние годы были разработаны развертки с резко укороченной длиной обратного конуса до величины 3—5 мм и уменьшением диаметра на заднем торце на 0,5— 0,7 мм, которые обеспечивают требуемую точность и высокую частоту поверхности особенно при обработке коротких отверстий. 2.2.7. Углы профиля. Обработка стружечных канавок разверток производится одноугловыми (рис. 3, а) или двуугловыми (рис. 3, б) фрезами с углом профиля θ = 65 ÷ 110°. Для средних и крупных размеров применяется профиль с очертанием стенки зуба по радиусу, что облегчает размещение стружки в канавках (рис, 3, в).

Профили канавок разверток
Рис. 3. Профили канавок разверток. Получение при фрезеровании неравномерного шага при одинаковой ширине зуба обеспечивается изменением глубины канавки соответствующей установкой фрезы. Обычно канавки у разверток делаются прямые, что упрощает их изготовление и контроль. Для обработки отверстий, прерывающихся по длине или имеющих продолъные канавки, незаменимы развертки с винтовыми зубьями. Винтовыми канавками также снабжаются развертки для обработки легких сплавов. Угол наклона винтовых зубьев у разверток может доходить до 30—45°. Направление винтовых канавок делается обратным направлению вращения развертки с целью устранении самозатягивания и заедания развертки в отверстии. Использование разверток с большим углом наклона винтовой канавки обеспечивает получение хорошей чистоты обработанной поверхности, но при этом возникают значительные усилия подачи. 2.2.8.Длина рабочей части развертки и общая ее длина. Длину рабочей части и общую длину разверток принимают по соответствующим стандартам, причем общая длина развертки зависит исключительно от глубины развертываемых отверстий и метода крепления развертки. Если развертка должна иметь направляющую часть, то необходимо в общую длину развертки включать длину направляющей части. Длину рабочей части развертки рекомендуют делать в пределах 0,8 – 3 диаметра развертки. Чем короче рабочая часть развертки, тем легче развертка режет, но из-за этого резко ухудшается направление развертки в отверстии и чистота поверхности отверстий. При хорошем направлении развертки в отверстии (наличие направляющей части) можно сокращать длину ее рабочей части. Существуют дисковые развертки, которые представляют собой диски с зубьями шириной, равной 0,1 – 0,2 диаметра развертки, насаживаемые на оправку с направляющей частью. 2.2.9.Элементы крепления развертки. Развертку снабжают соединительной частью. Насадные развертки чаще всего имеют конусное отверстие с конусностью 1: 30 и дополнительно торцовую шпоночную канавку. Хвостовые машинные развертки имеют конусный хвостовик с лапкой, которой вставляют в соответствующее гнездо шпинделя или специального патрона, или цилиндрический хвостовик. На ручных развертках на конце хвостовика делают квадрат для работы воротком. Благодаря шарнирному соединению качающийся патрон позволяет компенсировать несовпадение оси вращения развертки и оси детали. Патроны качающего типа недостаточно совершенны, так как в различных их положениях ось развертки по-разному располагается относительно оси отверстия. Плавающие патроны не имеют недостатков, связанных с перекосом оси развертки, так как развертка не может качаться, а перемещается только в направлении, перпендикулярном оси, благодаря чему ось отверстия получается правильно направленной. Развертки, направление которых осуществляется специальными гладкими направляющими, работают лучше и стойкость их выше. Длинные специальные развертки, которые служат для развертывания нескольких отверстий с общей осью обязательно должны иметь направляющую часть. Для свободного вращения и перемещения направляющей части в кондукторных втулках следует делать смазочные канавки на направляющей части, иначе возможно заедание и даже поломка развертки. 3.Особенности основных типов разверток. 3.1.Ручные цилиндрические развертки. Простейший и наиболее распространенный тип ручной развертки – цельная цилиндрическая с прямыми канавками (рис. 4, а). Их изготавливают обычно из хромистой стали 9ХС. Недостаток таких разверток – невозможность регулирования размера после износа развертки. В корпусе 1 разжимной развертки (рис. 4, б), изготовленной из стали 9ХС, в центре просверлено отверстие, на одном конце которого нарезана резьба; в глубине отверстие имеет конусную часть. В отверстие развертки вставлен шарик 3 и ввернут регулировочный винт 2. Если начать ввертывать винт, то он будет нажимать на шарик, который будет стремиться разжать стенки отверстия. В средней части корпус развертки снабжен прорезями. По мере вдавливания шарика в отверстие корпус развертки разжимается и увеличивается в диаметре, но увеличение диаметра происходит только в центральной части развертки. В корпусе ручной раздвижной развертки (рис. 4, в), изготовленной из конструкционной стали, профрезерованы точные пазы, идущие по отношению к оси развертки с уклоном. В пазы вставлены со скользящей посадкой плоские ножи. На торцах ножей имеются скосы под углом. Регулируемые раздвижные развертки имеют значительные пределы регулирования диаметра от 0,5 до 3 мм. Эти развертки очень удобны для ремонтных работ. Регулируемые ручные развертки изготавливают для отверстий диаметром 10 – 38 мм. Более мелкие развертки очень трудно изготовлять, а более крупные развертки редко используют в качестве ручных.


Рис. 4. Типы ручных разверток: а – цельная, б — разжимная, в – раздвижная. 3.2.Развертки для конических отверстий. Для развертывания конических отверстий часто применяют конусные развертки. Чем больше угол конусности, тем труднее развернуть коническое отверстие одной разверткой, и приходится делать несколько разверток. Развертки для конического отверстия работают в более тяжелых условиях, чем цилиндрические. Коническая развертка режет всем своим лезвием и имеет калибрующей части, так как режущие кромки по всей длине вступают в работу. В комплект входят три развертки: обдирочная, промежуточная и чистовая. Обдирочная развертка (рис. 5, а) предназначена для снятия значительного припуска; для облегчения работы режущей кромки делают ступенчатой. На конической образующей поверхности развертки нарезают затылованный винтовой зуб. Промежуточная развертка ( рис. 5, б) имеет стружкоразделительные канавки, нарезанные в виде резьбы; в зависимости от диаметра шаг этой резьбы различный. Чистовая развертка ( рис. 5, в) имеет прямые зубья по всей длине режущей части.


Рис. 5. Конические развертки. а) обдирочная, б) промежуточная, в) чистовая. 3.3.Машинные цилиндрические развертки. В отличие от ручных разверток машинные развертки имеют короткую рабочую часть и часто меньшее число зубьев; они стандартизованы. К цельным разверткам могут быть отнесены машинные развертки с твердыми сплавами. Корпус может быть выполнен с коническим хвостовиком или с цилиндрической зажимной частью. Начиная с 25 – 30 мм развертки можно изготавливать не хвостовыми, а насадными. Насадные развертки изготавливают из легированной стали 9ХС, а также из быстрорежущей стали. Применение твердого сплава дает возможность резко повысить износостойкость разверток, а также получить отверстие с меньшей шероховатостью поверхности. Все типы машинных разверток обладают одним общим недостатком: их нельзя регулировать по диаметру по мере износа. В настоящее время получают широкое распространение раздвижные машинные развертки различных конструкций. Их можно подразделить на две группы.

  1. Разжимные машинные развертки.
  2. Машинные развертки с привинченными ножами.

Развертка является чистовым инструментом, поэтому к заточке ее предъявляют особые требования. Режущие кромки развертки должны быть очень чисто обработаны, шероховатость поверхности режущих кромок развертки должна быть не ниже Rа= 0,32 мкм. У развертки должен быть заточен задний угол и передняя поверхность зуба; вначале затачивают переднюю поверхность зуба. Заточку производят на универсально – заточном станке.


Рис. 6. Машинные развертки. а) с твердым сплавом и коническим хвостовиком, б) сварные из быстрорежущей стали с коническим хвостовиком, в) насадные с пластинами из твердого сплава.

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями: