Главная / Гаджеты
Из почти подручных материалов. Не смотря на всю свою простоту, металлоискатель работает, он может найти монету на глубине до 10 см, кастрюлю на глубине до 30 см, а канализационный люк прибор видит на глубине 60 см. Это конечно немного, но для такого просто прибора довольно неплохо. Впрочем, если работать с ним на пляже или просто построить в ознакомительных целях, то зря времени вы не потеряете.
Материалы и инструменты для самоделки : — полный перечень деталей платы можно увидеть на схеме, она включает микросхему К176ЛА7; — провод для катушки (ПЭВ-2 0,08…0,09 мм); — броневой магнитопровод; — эпоксидка; — наушники; — паяльник с припоем; — материалы для создания штанги, корпуса и так далее.
Процесс изготовления металлоискателя:
Шаг первый. Пару слов о схеме
L1 нужно намотать на каркасе с тремя секциями с подстроечным сердечником и разместить в броневом магнитопроводе диаметром 8.8 мм, сделанного из феррита 600НН. Всего катушка имеет 200 витков провода ПЭВ-2 0,08…0,09 мм.
Катушка L2 делается из куска алюминиевой трубки диаметром 6-9 мм и длиной 950 мм. Через нее нужно продеть 18 отрезков провода с хорошей изоляцией. Далее трубку нужно согнуть с помощью оправки, в диаметре она должна быть примерно 15 см. Отрезки провода соединяются последовательно. Индуктивность такого рода катушки должна находится в пределах 350 мкГн.
Концы трубки замыкать не нужно, но один из них надо соединить общим проводом.
Для описанной выше схемы автор использовал резиновый шланг с металлической основой внутри, а также цельный провод, покрытый лаком. Чтобы не повредить изоляцию, применялся пинцет с резиновыми трубочками на концах. Обмотку нужно зафиксировать как можно тщательно, иначе прибор будет давать ложные срабатывания.
Важно отметить тот факт, что кабель, идущий от платы к катушке, должен быть экранирован.
Шаг второй. Дальнейшая сборка и настройка
Для настройки ручку конденсатора нужно повернуть в среднее положение, а затем путем вращения подстроечного сердечника L1 нужно добиться отсутствия биений в наушниках. Настройка будет являться правильной, если при повороте ручки переменного конденсатора на небольшой угол в наушниках будет слышен гул.
Настройка проводится на расстоянии не менее одного метра от массивных металлических предметов.
Автору удавалось повышать чувствительность прибора в том случае, если ввернуть сердечник подстроечной катушки до упора, а путем регулирования настройки с помощью переменного конденсатора достичь почти полного отсутствия звука в наушниках. При этом, если включить наушники на полную мощность, звук будет тихим.
Если будет так, что звук в наушниках вообще не слышен, нужно на выводах 4 DD1 и DD2 проверить наличие П-образного сигнала, для таких целей будет нужен осциллограф. На выводе 11 и 8 DD3 должна быть смесь сигналов.
Также следует отметить, что в оригинальной схеме указано сопротивление R3 300 кОм, но с таким сопротивлением наушники работать не будут. Его нужно заменить на 3 кОм. Вместо конденсаторов 5600 пФ автор также использовал на 4700 пФ, так как первых найти не удалось.
К недостаткам схемы можно отнести то, что палата чувствительна к температуре окружающей среды, в связи с этим прибор нужно постоянно настраивать переменным конденсатором, добиваясь нулевых биений.
Шаг три. Завершающий этап сборки
Катушку автор рекомендует залить эпоксидкой, это позволит надежно зафиксировать провода. В противном случае неизбежно будут ложные срабатывания, так как в процессе поиска приходиться задевать о камни, палки и другие препятствия, к тому-же, катушку можно легко повредить. Вместо эпоксидки подойдет воск или пластилин, который нужно расплавить и залить. Парафин использовать не следует, так как он становится после застывания хрупким и не имеет эластичности. Если выбор пал на пластилин, то нужно позаботиться о том, чтобы он не вытек, разогревшись на солнце.
Помимо всего прочего в схеме нежно заменить резистор R3, его номинал должен быть 300 кОм. Также нужно настроить частоту образцового генератора таким образом, чтобы в наушниках слышались уверенные и четкие щелчки. Чувствительность прибора определяется частотой следования щелчков, чем она ниже, тем лучше. С такими настройками автор находит копеечную монету СССР на глубине 10 см, которая лежит горизонтально.
Если сделать частоту щелчков высокой, то наличие металла под поисковой катушкой можно определить по изменению звучания.
Автор собрал также еще один такой прибор и у него обнаружилась проблема — отсутствие звука в наушниках. Решением стало удаление из схемы конденсатора С7. Также автор убрал регулятор громкости, поскольку звучание само по себе стало тише. С такой доработкой прибор не утратил чувствительности.
Корпус для прибора из пластика можно купить в радиомагазине, автору он обошелся в 31 рубль. Для экранирования схемы из картона нужно вырезать «рубашку» и обвернуть фольгой. Края фольги крепятся к картону скотчем, потом с помощью степлера крепится провод и подключается к минусу.
Также в схему нужно установить электролитический конденсатор 47-100 мкф после включения питания с напряжением не менее 10В.
Рассмотрим простенький металлоискатель на микросхеме K561ЛА7 и усилителе звука. Питание осуществляется напряжением 9 вольт. Так как ток потребления маленький, батарейки крона хватает на длительное время. По характеристикам прибор имеет средние показатели глубины обнаружения, достойные для такой простой схемы. Существуют похожие металлоискатели на микросхемах K561ЛА9, но они не дают значительного прироста показателей, поэтому отдаем предпочтение сборке данной упрощенной схемы.
В обнаружении металла главную роль играет датчик, состоящий из круглой катушки, корпуса и соединительного провода к схеме управления (рис. 1).
Появление в зоне действия датчика металла отражается на индуктивности катушки, которая, в свою очередь, влияет на частоту поисковой цепи на микроконтроллере. Конечный логический элемент микросхемы сравнивает эталонную величину частоты и частоту поисковой цепи и через усилитель выдает разницу в виде тонального звука в динамике.
Изготовление датчика
Схемы металлоискателей для разных устройств полностью отличаются друг от друга. Однако качественно собранный датчик может использоваться как универсальный для различных металлоискателей, работающих по одному принципу работы.
Для обмотки датчика используем лакированный провод ПЭВ или ПЭЛ диаметром 0,5 – 0,7 мм, который без проблем можно найти в магазине или старых кинескопных телевизорах и мониторах (рис. 2).
При диаметре катушки 20 см наматываем 100 витков провода. При других диаметрах изменяем количество витков, рассчитывая, что при 25 и 15 см диаметра наматывается 80 и 120 витков соответственно. После выполнения обмотки плотно обматываем ее изолентой, оставляя с запасом начало и конец провода.
Изготавливаем экран Фарадея, чтобы исключить различные помехи в катушке и микроконтроллерах. Необходимо обмотать катушку поверх изоленты пищевой фольгой. В конце обмотки фольгу не соединяем и оставляем разрыв в 2-3 см. Поверх фольги наматываем вразброс немного неизолированного провода маленького сечения (рис. 3).
В нескольких местах можно выполнить пайку провода и фольги. Все это снова обматываем изолентой.
После произведенных действий у нас должна получиться изолированная катушка с двумя вывода обмотки и выводом экрана. Соединяем их с экранированным кабелем от видео или аудиоаппаратуры. Экран кабеля соединяем с проводом от фольги, а жилы кабеля с проводами от катушки. Все это пропаиваем и надежно изолируем изолентой. На конце кабеля приделываем штекер с качественными контактами. Лучший вариант, если они позолоченные или серебряные. Штекер можно найти в кабелях для различной аппаратуры, там же берем и разъем.
Остается сделать корпус для катушки. Можно использовать два круглых диска из диэлектрического материала – фанеры, толстого картона или пластика. Между дисками помещаем обмотку. Затем пластмассовыми креплениями, которые можно приобрести в сантехническом магазине, плотно скрепляем эти два диска. Для поиска в водной среде можно герметизировать датчик эпоксидной смолой или специальными герметиками.
На верхнем диске прикручиваем или приклеиваем ушки из пластика или другого диэлектрического материала. Они понадобятся для крепления к штанге (рис. 4).
Текст книги «Металлоискатели»
Глава 3 Металлоискатели на микросхемах
В специализированной литературе много лет публикуются описания металлоискателей разных типов, выполненных на микросхемах. При этом предлагаемые конструкции отличаются не только используемой элементной базой, но и степенью сложности. В данной главе рассматриваются лишь некоторые схемотехнические решения, которые легли в основу как простых устройств, которые под силу собрать начинающим радиолюбителям, так и более сложных конструкций.
3.1. Простой металлоискатель на микросхеме К155ЛА3
Начинающим радиолюбителям можно рекомендовать для повторения конструкцию просго металлоискателя, основой для которого послужила схема, неоднократно публиковавшаяся в конце 70-х годов прошлого столетия в различных отечественных и зарубежных специализированных изданиях. Этот металлодетектор, выполненный всего на одной микросхеме типа К155ЛА3, можно собрать за несколько минут.
Принципиальная схема
Предлагаемая конструкция представляет собой один из многочисленных вариантов металлодетекторов типа BFO (Beat Frequency Oscillator), то есть является устройством, в основу которого положен принцип анализа биений двух сигналов, близких по частоте (рис. 3.1). При этом в данной конструкции оценка изменения частоты биений осуществляется на слух.
Рис. 3.1. Принципиальная схема металлоискателя на микросхеме К155ЛА3
Основу прибора составляют измерительный и опорный генераторы, детектор колебаний ВЧ, схема индикации, а также стабилизатор питающего напряжения.
В рассматриваемой конструкции использованы два простых LC-генератора, выполненные на микросхеме IC1. Схемотехнические решения этих генераторов практически идентичны. При этом первый генератор, который является опорным, собран на элементах IC1.1 и IC1.2, а второй, измерительный или перестраиваемый генератор, выполнен на элементах IC1.3 и IC1.4.
Контур опорного генератора образован конденсатором С1 емкостью 200 пФ и катушкой L1. В контуре измерительного генератора используются конденсатор переменной емкости С2 с максимальной емкостью примерно 300 пФ, а также поисковая катушка L2. При этом оба генератора настроены на рабочую частоту примерно 465 кГц.
Выходы генераторов через развязывающие конденсаторы СЗ и С4 подключены к детектору колебаний ВЧ, выполненному на диодах D1 и D2 по схеме удвоения выпрямленного напряжения. Нагрузкой детектора являются головные телефоны BF1, на которых выделяется сигнал низкочастотной составляющей. При этом конденсатор С5 шунтирует нагрузку по высшим частотам.
При приближении поисковой катушки L2 колебательного контура перестраиваемого генератора к металлическому предмету ее индуктивность изменяется, что вызывает изменение рабочей частоты данного генератора. При этом, если вблизи катушки L2 находится предмет из черного металла (ферромагнетика), ее индуктивность увеличивается, что приводит к уменьшению частоты перестраиваемого генератора. Цветной же металл уменьшает индуктивность катушки L2, а рабочую частоту генератора увеличивает.
ВЧ-сигнал, сформированный в результате смешивания сигналов измерительного и опорного генераторов после прохождения через конденсаторы С3 и С4, подается на детектор. При этом амплитуда сигнала ВЧ изменяется с частотой биений.
Низкочастотная огибающая ВЧ-сигнала выделяется детектором, выполненным на диодах D1 и D2. Конденсатор С5 обеспечивает фильтрацию высокочастотной составляющей сигнала. Далее сигнал биений поступает на головные телефоны BF1.
Питание на микросхему IC1 подается от источника В1 напряжением 9 В через стабилизатор напряжения, образованный стабилитроном D3, балластным резистором R3 и регулирующим транзистором T1.
Детали и конструкция
Для изготовления рассматриваемого металлоискателя можно использовать любую макетную плату. Поэтому к используемым деталям не предъявляются какие-либо ограничения, связанные с габаритными размерами. Монтаж может быть как навесной, так и печатный.
При повторении металлодетектора можно использовать микросхему К155ЛА3, состоящую из четырех логических элементов 2И-НЕ, питающихся от общего источника постоянного тока. В качестве конденсатора С2 можно использовать конденсатор настройки от переносного радиоприемника (например от радиоприемника «Альпинист»). Диоды D1 и D2 можно заменить любыми высокочастотными германиевыми диодами.
Катушка L1 контура опорного генератора должна иметь индуктивность около 500 мкГ. В качестве такой катушки рекомендуется использовать, например, катушку фильтра ПЧ супергетеродинного приемника.
Измерительная катушка L2 содержит 30 витков провода ПЭЛ диаметром 0,4 мм и выполнена в виде тора диаметром 200 мм. Эту катушку проще изготовить на жестком каркасе, однако можно обойтись и без него. В этом случае в качестве временного каркаса можно использовать любой подходящий по размерам круглый предмет, например банку. Витки катушки наматываются внавал, после чего снимаются с каркаса и экранируются электростатическим экраном, который представляет собой незамкнутую ленту из алюминиевой фольги, намотанную поверх жгута витков. Щель между началом и концом намотки ленты (зазор между концами экрана) должна составлять не менее 15 мм.
При изготовлении катушки L2 нужно особенно следить за тем, чтобы не произошло замыкание концов экранирующей ленты, поскольку в этом случае образуется короткозамкнутый виток. В целях повышения механической прочности катушку можно пропитать эпоксидным клеем.
Для источника звуковых сигналов следует применить высокоомные головные телефоны с возможно большим сопротивлением (около 2000 Ом). Подойдет, например, широко известный телефон ТА-4 или ТОН-2.
В качестве источника питания В1 можно использовать, например, батарейку «Крона» или две батарейки типа 3336Л, соединенные последовательно.
В стабилизаторе напряжения емкость электролитического конденсатора С6 может составлять от 20 до 50 мкФ, а конденсатора С7 – от 3 300 до 68 000 пФ. Напряжение на выходе стабилизатора, равное 5 В, устанавливается подстроечным резистором R4. Такое напряжение будет поддерживаться неизменным даже при значительной разрядке батарей.
Необходимо отметить, что микросхема К155ЛАЗ рассчитана на питание от источника постоянного тока напряжением 5 В. Поэтому при желании из схемы можно исключить блок стабилизатора напряжения и использовать качестве источника питания одну батарейку типа 3336Л или аналогичную ей, что позволяет собрать компактную конструкцию. Однако разрядка этой батарейки очень быстро отразится на функциональных возможностях данного металлодетектора. Именно поэтому необходим блок питания, обеспечивающий формирование стабильного напряжения 5 В.
Следует признать, что в качестве источника питания автор использовал четыре большие круглые батарейки импортного производства, соединенные последовательно. При этом напряжение 5 В формировалось интегральным стабилизатором типа 7805.
Плата с расположенными на ней элементами и источник питания размещаются в любом подходящем пластмассовом или деревянном корпусе. На крышке корпуса устанавливаются переменный конденсатор С2, выключатель S1, а также разъемы для подключения поисковой катушки L2 и головных телефонов BF1 (эти разъемы и выключатель S1 на принципиальной схеме не указаны).
Налаживание
Как и при регулировке других металлоискателей, данный прибор следует настраивать в условиях, когда металлические предметы удалены от поисковой катушки L2 на расстояние не менее одного метра.
Сначала с помощью частотомера или осциллографа необходимо настроить рабочие частоты опорного и измерительного генераторов. Частота опорного генератора устанавливается равной примерно 465 кГц регулировкой сердечника катушки L1 и, при необходимости, подбором емкости конденсатора С1. Перед регулировкой потребуется отсоединить соответствующий вывод конденсатора С3 от диодов детектора и конденсатора С4. Далее нужно отсоединить соответствующий вывод конденсатора С4 от диодов детектора и от конденсатора С3 и регулировкой конденсатора С2 установить частоту измерительного генератора так, чтобы ее значение отличалось от частоты опорного генератора примерно на 1 кГц.
После восстановления всех соединений металлоискатель готов к работе.
Порядок работы
Проведение поисковых работ с помощью рассмотренного металлодетектора не имеет каких-либо особенностей. При практическом использовании прибора следует переменным конденсатором С2 поддерживать необходимую частоту сигнала биений, которая изменяется при разряде батареи, изменении температуры окружающей среды или девиации магнитных свойств грунта.
Если в процессе работы частота сигнала в головных телефонах изменится, то это свидетельствует о наличии в зоне действия поисковой катушки L2 какого-либо металлического предмета. При приближении к некоторым металлам частота сигнала биений будет увеличиваться, а при приближении к другим – уменьшаться. По изменению тона сигнала биений, имея определенный опыт, можно легко определить, из какого металла, магнитного или немагнитного, изготовлен обнаруженный предмет.
3.2. Простой металлоискатель на микросхеме К176ЛЕ5
Как уже указывалось ранее, среди начинающих радиолюбителей большой популярностью пользуются схемы металлодетекторов, которые работают по принципу анализа частоты сигнала биений, возникающего при смешивании двух близких по частоте сигналов (принцип BFO). Такие приборы просты в изготовлении и налаживании, о чем можно судить, ознакомившись со следующей конструкцией.
Принципиальная схема
Как и в металлодетекторе, рассмотренном в предыдущем разделе, данный прибор собран всего на одной микросхеме (рис. 3.2). Однако отличия заключаются не только в другом типе используемой микросхемы, но и в схемотехнике опорного и измерительного генераторов. Несколько иное построение схемы позволило обойтись без конденсатора переменной емкости, а также использовать всего одну катушку индуктивности.
Рис. 3.2. Принципиальная схема металлоискателя на микросхеме К176ЛЕ5
Основу прибора составляют измерительный и опорный генераторы, детектор колебаний ВЧ и схема индикации.
Как и в упомянутой конструкции, в рассматриваемом приборе использованы два простых генератора, выполненные на элементах микросхемы IC1. При этом первый генератор, который является опорным, собран на элементах IC1.1 и IC1.2, а второй, измерительный или перестраиваемый генератор выполнен на элементах IC1.3 и IC1.4.
Рабочая частота опорного генератора зависит от суммарного сопротивления резисторов R1 и R2, а также от емкости конденсатора С1. Подстроечным резистором R1 обеспечивается грубое, а переменным резистором R2 – плавное изменение частоты генератора. Частота измерительного генератора зависит от емкости конденсатора С2 и индуктивности катушки L1, которая является поисковой.
Выходы обоих генераторов через развязывающие конденсаторы С3 и С4 подключены к детектору ВЧ-колебаний, выполненному на диодах D1 и D2 по схеме удвоения выпрямленного напряжения.
С выхода детектора низкочастотный сигнал подается непосредственно на головные телефоны BF1. Конденсатор С5 обеспечивает шунтирование нагрузки по высшим частотам.
При приближении поисковой катушки L1 колебательного контура перестраиваемого генератора к металлическому предмету ее индуктивность изменяется, что вызывает изменение рабочей частоты генератора. Если вблизи катушки L1 находится предмет из черного металла, ее индуктивность увеличивается, что приводит к уменьшению частоты измерительного генератора. Цветной же металл уменьшает индуктивность катушки L1, при этом рабочая частота генератора возрастает.
ВЧ-сигнал, сформированный в результате смешивания сигналов измерительного и опорного генераторов после прохождения через конденсаторы С3 и С4, подается на детектор. При этом амплитуда сигнала ВЧ изменяется с частотой биений.
Низкочастотная огибающая ВЧ-сигнала выделяется детектором, выполненным на диодах D1 и D2. Конденсатор С5 обеспечивает фильтрацию высокочастотной составляющей сигнала. Далее сигнал биений поступает на головные телефоны BF1.
Питание на микросхему IC1 подается от источника В1 напряжением 9 В.
Детали и конструкция
Все детали простого транзисторного металлоискателя за исключением поисковой катушки L1, резисторов R1 и R2, разъемов Х1 и Х2 и выключателя S1 расположены на печатной плате размерами 80х22 мм, изготовленной из одностороннего фольгированного гетинакса или текстолита.
К деталям, применяемым в данном устройстве, не предъявляются какие-либо особые требования. Естественно, рекомендуется использовать любые малогабаритные конденсаторы и резисторы, которые без проблем можно разместить на печатной плате (рис. 3.3).
Рис. 3.3. Печатная плата (а) и расположение элементов (б) металлоискателя на микросхеме К176ЛЕ5
В данном приборе помимо микросхемы К176ЛЕ5 можно использовать микросхемы К176ЛА7, К176ПУ1, К176ПУ2, К561ЛА7, К564ЛА7 или К564ЛН2.
Подстроечный резистор R1 может быть типа СП5-2, а переменный резистор R2 – типа СПО-0,5 (вполне подойдут и другие малогабаритные резисторы), конденсатор С6 – типа К50-12 или любой другой на номинальное напряжение не менее 10 В. Остальные конденсаторы могут быть любыми малогабаритными керамическими, например типа КМ-6.
Для изготовления катушки L1 рекомендуется использовать отрезок медной или алюминиевой трубки с внутренним диаметром 8-10 мм и длиной около 630 мм. Внутри трубки следует протянуть жгут из 20 отрезков провода ПЭЛШО диаметром 0,5 мм, предварительно протянутых в полихлорвиниловую трубку. Дюралюминиевую трубку с находящимися в ней проводами надо изогнуть по шаблону в кольцо диаметром около 200 мм. Конец провода, являющийся началом первого витка, следует припаять к одному из выводов конденсатора С2, начало второго витка – к концу первого витка и так далее. Конец последнего витка припаивается ко второму выводу конденсатора С2. В результате получится катушка, содержащая 20 витков. При изготовлении катушки L1 нужно особенно следить за тем, чтобы не произошло замыкание концов экранирующей трубки, поскольку в этом случае образуется короткозамкнутый виток.
Для изготовления экрана можно использовать и обычную алюминиевую фольгу. В этом случае дополнительную жесткость конструкции катушки L1 можно придать, если расположить ее между двумя дисками из фанеры или гетинакса соответствующих размеров.
В качестве источника звуковых сигналов рекомендуется применять любые высокоомные головные телефоны с сопротивлением около 2000 Ом. Подойдет широко известный телефон ТА-4 или ТОН-2.
Источником питания В1 может служить батарейка «Крона» или две батарейки типа 3336Л, соединенные последовательно.
Печатная плата с расположенными на ней элементами и источник питания размещаются в любом подходящем пластмассовом или деревянном корпусе. На крышке корпуса устанавливаются подстроечный резистор R1 и переменный резистор R2, разъем Х1 для подключения головных телефонов BF1, а также выключатель S1.
Поисковая катушка L1 располагается на конце любой удобной ручки.
Налаживание
Налаживание рассматриваемого металлоискателя следует проводить в условиях, когда металлические предметы удалены от поисковой катушки L1 на расстояние не менее одного метра.
Сначала необходимо настроить рабочие частоты опорного и измерительного генераторов, предварительно установив движки резисторов R1 и R2 в среднее положение. Установку частот желательно контролировать с помощью частотомера или осциллографа. Частота опорного генератора грубо устанавливается регулировкой резистора R1, а более точно – переменным резистором R2. При необходимости можно подобрать емкость конденсатора С1. Перед выполнением этой регулировки потребуется отсоединить соответствующий вывод конденсатора С3 от диодов детектора и от конденсатора С4. Далее, отсоединив соответствующий вывод конденсатора С4 от диодов детектора и от конденсатора С3, подбором емкости конденсатора С2 следует выбрать частоту измерительного генератора так, чтобы ее значение отличалось от частоты опорного генератора примерно на 500-1000 Гц.
К сожалению, выбрать более низкую частоту биений для получения высокой чувствительности невозможно по ряду причин. Во-первых, при таких близких частотах двух генераторов возможен «захват» частоты одного генератора другим, что приведет к их взаимной синхронизации. А во-вторых, на сигналы низких частот биений, на которых достигается максимальная чувствительность (например, при частоте биений 1-10 Гц) головные телефоны практически не реагируют.
После восстановления всех соединений вращением движка резистора R1 следует добиться наиболее низкого тона в головных телефонах.
При появлении помех или сбоев в работе прибора, обусловленных взаимным влиянием генераторов, между выводами 7 и 14 микросхемы IC1 рекомендуется впаять конденсатор емкостью 0,01-0,1 мкФ.
Порядок работы
При практическом использовании прибора необходимую частоту сигнала биений следует поддерживать переменным резистором R2. Частота биений может изменяться под влиянием различных факторов (например, при изменении температуры окружающей среды, девиации магнитных свойств грунта или разряде батареи).
Если в процессе работы в зоне действия поисковой катушки L1 окажется какой-либо металлический предмет, то частота сигнала в телефонах изменится. При приближении к некоторым металлам частота сигнала биений будет увеличиваться, а при приближении к другим – уменьшаться. По изменению тона сигнала биений, имея определенный опыт, можно легко определить, из какого металла, магнитного или немагнитного, изготовлен обнаруженный предмет.
3.3. Простой металлоискатель на микросхеме К561ЛЕ5
Помимо рассмотренных в предыдущих разделах данной главы металлодетекторов существуют и другие варианты устройств на микросхемах, работа которых основана на принципе биений. Одна из таких конструкций создана на базе металлоискателя, разработанного И. Нечаевым из г. Курска (С подробным описанием прибора И. Нечаева можно ознакомиться в журнале «Радио» № 1 за 1987 год).
Принципиальная схема
Как уже упоминалось, рассматриваемый металлодетектор представляет собой один из многочисленных вариантов прибора типа BFO (Beat Frequency Oscillator), то есть является устройством, в основу которого положен принцип анализа биений двух частот. При этом в данной конструкции оценка изменения частоты осуществляется на слух.
Основу схемы этого прибора составляют измерительный и опорный генераторы, смеситель и схема акустической индикации (рис. 3.4). Опорный и измерительный генераторы выполнены на элементах микросхемы IC1.
Рис. 3.4. Принципиальная схема металлоискателя на микросхеме К561ЛЕ5
Опорный генератор собран на элементе IC1.1. Отрицательная обратная связь по постоянному току между выходом (вывод 3) и входом (выводы 1, 2) данного элемента осуществляется через резистор R1 и катушку индуктивности L1. Параметры катушки L1 и резистора R1 выбраны так, что элемент работает на линейном участке передаточной характеристики. Таким образом создаются условия для возбуждения каскада на частоте примерно 100 кГц, которая определяется параметрами элементов контура L1C1С2C3. Элемент IC1.1 обладает высоким входным сопротивлением, поэтому добротность контура и стабильность частоты генератора сравнительно высоки. Резистор R3 ослабляет шунтирующее влияние выходного сопротивления элемента на контур. При необходимости частоту колебаний опорного генератора можно изменять в небольших пределах конденсатором переменной емкости С2.
Измерительный генератор выполнен по аналогичной схеме на элементе IC1.2. При этом рабочая частота данного генератора определяется параметрами элементов контура L2C4С5. Катушка L2 является поисковой. При приближении поисковой катушки L2 колебательного контура перестраиваемого генератора к металлическому предмету ее индуктивность изменяется, что вызывает изменение рабочей частоты генератора.
Колебания с опорного и измерительного генераторов поступают на входы элемента IC1.3, выполняющего функции смесителя сигналов. В результате на выходе элемента IC1.3 будут присутствовать не только сигналы основных частот генераторов, но и сигналы гармонических составляющих разностных и суммарных частот. Одним из самых мощных будет сигнал разностной частоты, который выделяется на резисторе R4. Остальные сигналы подавляются фильтром, в состав которого входят резистор R3 и конденсатор C6.
Выходной сигнал через регулятор громкости R4 подается непосредственно на головные телефоны BF1. Использовать дополнительный низкочастотный усилитель не требуется, поскольку амплитуда выходного сигнала элемента IC1.3 составляет несколько вольт.
Питание на микросхему IC1 подается от источника В1 напряжением 9 В.
Детали и конструкция
Для изготовления рассматриваемого металлоискателя можно использовать любую макетную плату. Поэтому к используемым деталям не предъявляются какие-либо ограничения, связанные с габаритными размерами.
В статье И. Нечаева рекомендуется расположить детали данного металлодетектора (за исключением поисковой катушки L2, резистора R4, разъема Х1 и выключателя S1) на печатной плате размерами 60х55 мм (рис. 3.5), изготовленной из одностороннего фольгированного гетинакса или текстолита.
Рис. 3.5. Печатная плата (а) и расположение элементов (б) металлоискателя на микросхеме К561ЛЕ5
Неиспользуемые входные выводы четвертого элемента микросхемы IC1 необходимо соединить с общим проводом.
В данном приборе можно использовать микросхемы серий К176, К561, К564, содержащие не менее трех логических элементов «или – не» или «и – не», например типа К561ЛЕ5, К561ЛА7, К561ЛА9 или К561ЛЕ10.
В качестве конденсатора С2 рекомендуется использовать любой конденсатор переменной емкости от малогабаритного радиоприемника. Максимальная емкость этого конденсатора должна быть не менее 150 пФ. Остальные конденсаторы могут быть любыми малогабаритными керамическими, например типа КЛС, КМ или КТ. Необходимо отметить, что для повышения термостабильности устройства конденсаторы С1, С3-С5 должны иметь ТКЕ не хуже М750 или М1500.
Постоянные резисторы могут быть любыми малогабаритными, например типа МЛТ-0,125. Переменный резистор R4 может иметь сопротивление от 10 до 68 кОм. При этом в качестве такого регулятора не рекомендуется использовать резисторы, механически соединенные с выключателем питания S1.
Катушка L1 контура опорного генератора может быть выполнена на каркасе от катушки контура ПЧ любого малогабаритного транзисторного приемника. Например, в металлодетекторе И. Нечаева эта катушка намотана на трехсекционном каркасе контура ПЧ радиоприемника «Сокол-403». При этом катушка L1 помещена в броневой сердечник диаметром 8,6 мм из феррита 600НН с подстроечником диаметром 2,8 и длиной 12 мм из такого же феррита. Катушка L1 содержит 200 витков провода ПЭВ-2 диаметром 0,09 мм.
Для изготовления поисковой катушки L2 рекомендуется использовать отрезок медной или алюминиевой трубки с внутренним диаметром 6–8 мм и длиной около 950 мм. Внутри трубки следует протянуть жгут из 18 отрезков провода МГТФ диаметром 0,07 мм, предварительно протянутых в полихлорвиниловую трубку. Дюралюминиевую трубку с находящимися в ней проводами надо изогнуть по шаблону в кольцо диаметром около 300 мм. Конец провода, являющийся началом первого витка, следует припаять к соответствующему выводу конденсатора С4, начало второго витка – к концу первого витка и так далее. Конец последнего витка припаивается к соответствующему выводу конденсатора С5. В результате получится катушка, содержащая 18 витков и имеющая индуктивность примерно 350 мкГ.
При изготовлении катушки L2 нужно особенно следить за тем, чтобы не произошло замыкания концов экранирующей трубки, поскольку в этом случае образуется короткозамкнутый виток.
Вместо тонкостенной трубки для изготовления экрана можно использовать и обычную алюминиевую фольгу. В этом случае дополнительную жесткость конструкции катушки L2 можно придать, если расположить ее между двумя дисками из фанеры или гетинакса соответствующих размеров.
В качестве источника звуковых сигналов следует использовать высокоомные головные телефоны с возможно большим сопротивлением (около 2000 Ом). Подойдут, например, широко известные телефоны ТА-4 или ТОН-2. При использовании низкоомных телефонов металлоискатель следует дополнить каскадом на транзисторе КТ315Б, установив резистор R3 сопротивлением 10 кОм, а конденсатор С6 – емкостью 1000 пФ.
В качестве источника питания В1 можно использовать, например, батарейку «Крона» или две батарейки типа 3336Л, соединенные последовательно.
Печатная плата с расположенными на ней элементами и источник питания размещаются в любом подходящем металлическом корпусе. На крышке корпуса устанавливаются переменный резистор R4, разъем Х1 для подключения головных телефонов BF1, разъем Х2 для подключения поисковой катушки L2 и выключатель S1.
Налаживание
Как и при регулировке других металлоискателей, налаживание данного прибора следует проводить в условиях, когда металлические предметы удалены от поисковой катушки L2 на расстояние не менее одного метра.
Сначала необходимо настроить рабочую частоту опорного генератора. Для этого первоначально частота опорного генератора устанавливается равной рабочей частоте измерительного генератора с помощью регулировки положения подстроечного сердечника катушки L1 до полного пропадания звукового сигнала в головных телефонах, то есть до установки нулевых биений. Предварительно ротор конденсатора С2 следует установить примерно в среднее положение. В результате при незначительном повороте ручки конденсатора С2 в любую сторону в телефонах должен появляться звук низкого тона. При необходимости для настройки частоты опорного генератора можно воспользоваться частотомером или осциллографом.
Рекомендуемая разность частот опорного и измерительного генераторов должна составлять 400–500 Гц. При этом частота опорного генератора должна быть выше частоты измерительного генератора. Выбор столь высокого значения разностной частоты объясняется тем, что оба генератора, опорный и измерительный, выполнены на элементах одного общего кристалла микросхемы, и поэтому между ними неизбежно возникают паразитные связи, устранить которые практически невозможно. Этот факт и вынуждает использовать в данном металлоискателе биения частотой более 100–300 Гц, что неизбежно приводит к снижению его чувствительности.
Порядок работы
При безошибочном монтаже, исправных деталях и правильной регулировке рассматриваемый металлоискатель готов к работе сразу после окончания настройки.
Перед началом поисковых работ конденсатором С2 желательно установить возможно меньшую частоту биений. Это позволит повысить чувствительность прибора, поскольку обеспечит регистрацию даже небольших изменений частоты измерительного генератора. Однако очень низкую частоту биений выбрать не удастся, потому что на ней громкость звука в телефонах резко понизится.
Если в процессе работы частота сигнала в головных телефонах изменится, то это свидетельствует о наличии в зоне действия поисковой катушки L2 какого-либо металлического предмета. При приближении катушки к предметам из магнитных металлов (например из железа, феррита или никеля) частота сигнала биений будет увеличиваться, а при приближении к предметам из немагнитных металлов (например из алюминия, меди или латуни) – уменьшаться. По изменению тона сигнала биений, имея определенный опыт, можно легко определить, из какого металла, магнитного или немагнитного, изготовлен обнаруженный предмет.
Уровень громкости сигнала в головных телефонах регулируется резистором R4.
Комплектующие для схемы
Ниже описаны основные детали и требования к ним, необходимые для качественной сборки схемы:
- Конденсаторы рекомендуется закупать в радиомагазине, но если хочется получить их бесплатно из старых схем, то измеряйте емкость перед использованием. Главное требование к ним – температурная устойчивость, это спасет вас от постоянных сбоев металлоискателя. Отлично подойдут керамические или слюдяные. При сборке не забываем учитывать полярность электролитических конденсаторов – на бочонке в стороне минуса нарисованы одна или несколько полосок (рис. 5). Понадобятся следующие конденсаторы: электролитический 100 мкФ х 16 В – 1 шт.; 1000 пФ – 3 шт.; 22 нФ – 2 шт.; 300 пФ – 1 шт.
- Постоянные резисторы можно использовать старые, так как они не теряют свои характеристики с течением времени. Переменные лучше всего купить новые, чтобы обеспечить точную настройку частоты на микросхемах. Особое внимание стоит уделить контактам переменного резистора, так как по схеме два контакта должны быть соединены между собой, а опыт показывает, что многие новички этого не замечают. Так же необходимо заземлить их корпус для исключения помех при регулировке. Понадобятся 5 постоянных резисторов номиналами 22 Ом, 1кОм, 4,7 кОм, 10 кОм, 470 кОм и 3 переменных резистора номиналами 1, 5 и 20 кОм.
- Микросхема K561ЛА7 в DIP корпусе. Отсчет ног на микросхемах начинается сверху против часовой стрелке от ключа – специальной выемки на корпусе. В качестве аналога можно сделать металлоискатель на микросхеме K561ЛЕ5 или CD4011.
- Транзистор KT315 очень распространен в старой радиоаппаратуре. Но его можно заменить множеством других транзисторов: KT3102, BC546, 2SC639 и схожие по характеристикам маломощные низкочастотные транзисторы. Внимательно изучаем выводы транзистора перед пайкой, у KT315 они расположены слева направо от лицевой части – эмиттер, коллектор, база (рис. 6):
- Диод выбираем любой маломощный из отечественных или импортных производителей – кд522Б, кд105, кд106, in4148, in4001 и другие. Перед пайкой прозванием его мультиметром, чтобы не перепутать местами анод и катод.
- Стандартные наушники от телефона или mp3 плеера, или миниатюрный динамик со старой техники. В случае использования наушников можно использовать разъем или прямую пайку.
- Батарейка крона 9 В и контакты для нее (рис. 7):
- Разъем для штекера кабеля датчика подбираем заранее, при изготовлении датчика.
После сборки всех необходимых деталей, можно смело приступать к монтажу их по схеме, описанной ниже.
Простой импульсный металлоискатель «ПИРАТ»
Импульсный металлоискатель своими руками
Pirat — расшифровывается так: PI — означает металлодетектор импульсный, а RAT — сайт автора: «radioscot». Данный металлоискатель завоевал славу простого и не дорогого прибора, малое количество доступных не дефицитных деталей, при правильной сборке и исправных деталей прибор работает сразу, практически без настроек.
Если сравнивать с также простой схемой металлоискателя на биениях частоты, то здесь глубина обнаружения металла на порядок лучше. Дискриминации в данном типе металлоискателя нет, цветной и чёрный металлы реагируют практически одинаково. Но при определённых навыках можно понять, какая цель находится под датчиком. Сборка и настройка данного металлоискателя намного проще, чем рассматриваемого ранее импульсного металлоискателя «VINTIK-PI».
Характеристики металлоискателя «ПИРАТ»
Конечно, характеристики во многом зависят от использованных деталей, диаметра катушки, качества сборки и т.д.
Схема металлоискателя «ПИРАТ»
Есть много различных вариантов схем металлоискателя ПИРАТ и доработок к ним.
Вариант: генератор на транзисторах, приёмник на К157УД2
Вариант: генератор на NE555, приёмник на К157УД2
Вариант: генератор на NE555, а приемник на TL072
с регулировкой частоты генератора:
Вариант: генератор на К561ЛА7/ЛЕ5, приёмник на К157УД2
Печатная плата металлоискателя ПИРАТ
Существуют также много различных вариантов ПП, ниже несколько вариантов.
Вариант: генератор на NE555, приёмник на К157УД2
Вариант: генератор на транзисторах, приёмник на К157УД2
Вариант: генератор на NE555, приёмник на TL072
Описание схемы
Схема металлоискателя состоит из двух основных узлов: передающего и приемного.
Передающий узел состоит из генератора импульсов на микросхеме КР1006ВИ1 (зарубежный аналог NE555) и мощного ключа на полевом транзисторе КП505А (зарубежный аналог IRF740, IRF840). Можно поставить биполярный транзистор обратной проводимости с напряжением К-Э не менее 200В. Его можно взять из энергосберегающей лампы или зарядного устройства от мобильного телефона. Для раскачки мощного ключа используется транзистор ВС557.
Приемный узел собран на микросхеме К157УД2 (можно собрать зарубежной мс TL072), по входу приёмника стоят встречно-параллельно ограничивающие диоды, на входе второго каскада приемника стоит фильтр, вырезающий нужную часть импульсов, на выходе второго каскада стоит транзисторе ВС547, в его коллекторной цепи подключен динамик 8-50 Ом. В место Т3 можно применять практически любой транзистор структуры NPN.
Монтаж схемы управления
Электрическая схема состоит из микросхемы K561ЛА7, ее обвязки для регулировки, усилителя, питания и динамика. Микросхема имеет 4 логических элемента. Двое из них создают нужную частоту, третий играет роль поисковой части. Конечный логический элемент сравнивает обе частоты и при разных значениях выдает положительный сигнал на усилитель, который подает усиленный сигнал на динамик.
Схема металлоискателя на микросхеме, описанной выше, изображена на рисунке 8.
Собирать электрические принципиальные схемы очень удобно на макетной плате с отверстиями (рис.9). Или изготавливаем самодельную печатную плату, изображенную на рисунке 10. Изготовить плату можно лазерно-утюжным методом или обычным рисованием. Травлю производим любым известным способом.
Производим пайку деталей и припаиваем проводками все выносные детали – регуляторы, разъем для наушников, датчика и батарейки.
После сборки схемы, закрепляем ее в корпусе. Туда же помещаем батарейку. В качестве корпуса подойдет пластмассовая, монтажная, самодельная из дерева и другие коробки на ваш выбор (рис. 11).
Для трех регуляторов и разъема датчика необходимо проделать соответствующие размерам отверстия. Можно последовательно батарейке добавить выключатель и так же вынести его на корпус. Необходимо предусмотреть маленькие отверстия для динамика, или, в случае с наушниками, плотно закрепить разъем.
Главным условием при сборке корпуса является доступность, например для смены батареи, и, в то же время, герметичность – от внезапного дождя. Можно закрепить красивые колпачки на регуляторы, разукрасить коробку и подписать регуляторы с выключателем.
Что представляет собой металлоискатель
Подобный прибор, самодельный или сделанный на заводе, предназначен для поиска любого металла под слоем грунта, независимо, будут ли это куски железа, меди или что-то еще более ценное. Используют такие устройства не только золотоискатели, но и различные археологические группы, патриотические сообщества (в поисках останков и предметов, оставшихся в земле после второй мировой войны) и даже саперы при разминировании территорий.
Формы, как и схемы металлоискателей, бывают разными. Это может быть диск, закрепленный на рукоятке, а может быть и некое подобие микрофона. Суть данного прибора от этого не меняется — при обнаружении на небольшой глубине любого металлического предмета он издает определенный звук при помощи встроенного в него зуммера, сигнализируя о находке.
Работают подобные устройства на основании физического закона, по которому действует электромагнитная индукция. Составными его частями являются передатчик, который, принимая сигнал, отправляет его на оповещающее устройство (звуковое или визуальное), самого приемника сигнала и зуммера либо экрана. Электромагнитные колебания отправляются к поверхности и отражаются. Если передаваемый сигнал возвращается неизмененным, в цепи ничего не происходит, но при условии, что в область прохождения сигнала попадает любой металл, возвращенная волна получается искаженной и это фиксируется передатчиком, который и подает звуковое или визуальное оповещение.
Сборка и настройка устройства
Когда датчик и блок управления готовы, необходимо связать их в готовый металлоискатель. Для этого понадобится штанга. Сделать ее можно из ПВХ труб и переходников, которые путем подогрева подогнуть под нужные размеры и форму. Можно так же воспользоваться обычным деревянным шестом, костылем или телескопической удочкой. Какие материалы выбрать зависит от ваших предпочтений – учитывайте вес, гибкость и длину. Для удобства можно соорудить ручку и подлокотник, а так же сделать штангу разборной (рис. 12).
Далее закрепляем датчик с готовыми ушками к штанге. Воспользуйтесь пластиковым крепежом, надежным клеем или сантехническими переходниками. Таким же образом закрепляем блок управления.
Чтобы произвести настройку, подключаем батарейку и датчик. Так как металлоискатели являются чувствительными устройствами, то для правильной настройки необходимо убрать все металлические предметы вокруг. Включаем его и наблюдаем один из двух вариантов:
Если после включения идеальная тишина или еле слышный писк, то тут два варианта:
а) Генераторы работают на одной частоте. Такие случаи редкие, но бывают. Попробуйте покрутить регуляторы плавной R7 и грубой R8 настройки. Если тишина сменится на громкий тональный звук, то схема работает. Возвращаем регуляторы в начальное положение и пытаемся плавным регулятором R7 добиться наилучших результатов, например полного отсутствия звука;
б) Неисправность схемы. Внимательно перепроверяем всю схему и радиодетали.
Если после включения идет гул или высокий тон
, то пробуем уменьшить его вращением регулятора грубой настройки R8, а достигнув лучшего результата, подстраиваем R7. Если металлоискатель не реагирует на вращение регуляторов, то частота эталонного генератора слишком отличается от частоты поисковой цепи. В таком случае пробуем поймать нужную частоту изменением конденсатора С6 и резистора R6.
Всю настройку значительно может упростить осциллограф. Суть настройки заключается в том, чтобы добиться одинаковой или близкой по величине частоты выводов 5 и 6 на микроконтроллере. Регулировку частоты можно производить вышеописанными способами.
Если вы осилили сборку данного устройства, можете смело попробовать собрать более сложный металлоискатель на трех микросхемах или микроконтроллере.
Устройство металлодетектора
Металлоискатель – самый главный инструмент ручного поиска металлов в хаотичной природной или искусственной среде. С помощью такого прибора можно искать не только чёрный металл, но и золото, серебро, другие драгоценные металлы.
Принцип устройства любого металлоискателя основан на электромагнитных эффектах.
Вот как работает типичная технология поиска металла:
- Прибор создаёт электромагнитное поле.
- Металлический объект, скрытно расположенный в инородной среде, оказывает воздействие на такое поле, когда попадает в сферу его влияния.
- Прибор улавливает воздействие объекта на электромагнитное поле и сигнализирует об этом.
Большее количество моделей металлоискателей работают именно на таком принципе.
Технические различия такой аппаратуры позволяют получить более полную информацию о факте обнаружения металлического объекта, например:
- оценить массу находки;
- получить данные о форме, размерах и конфигурации объекта;
- уточнить место расположения, в том числе – по глубине.
Самые простые, примитивные металлоискатели (обычно это самодельные конструкции для поиска золота, серебра и других металлов энтузиастов-любителей) собирают из готовых устройств и изделий, работающих с использованием электромагнитных эффектов.
Многие знакомы с примитивной, но вполне работоспособной схемой металлоискателя, в котором электромагнитное поле создаёт импульсный элемент обычного калькулятора.
Популярные статьи Бумажная роза
Реакцию создаваемого поля на обнаруженные металлические объекты улавливает самый простой бытовой радиоприёмник. Сигнал о такой находке — звуковой, достаточно отчётливый и понятный.
Более сложные любительские и профессиональные устройства поиска металлов сохраняют логическую основу технологии в виде трёх компонентов:
- генератора электромагнитного поля;
- датчика изменений этого поля;
- аппаратуры оценки обнаруженных аномалий, сигнализирующей об этом.
Устройства разного уровня сложности и функционального потенциала могут быть условно разделены на группы. Классификация на основе профессионализма и специализации пользователей – одна из общепризнанных:
- любительская аппаратура, собранная собственноручно и используемая в качестве инструмента хобби или новичками в деле поиска металлов;
- полупрофессиональная аппаратура, необходимая увлечённым любителям и фанатикам;
- профессиональные металлоискатели для постоянно работающих в этой сфере;
- специальные аппараты для мастеров поиска металла в сложных условиях – на глубине, под водой, с выделением драгоценных металлов.
Распространение аппаратуры поиска металлов таково, что многие устройства этого типа можно приобрести в магазинах садового и дачного инвентаря.
Аппарат для поиска и обнаружения металла нужен не только в деле рециклинга, в поиске артефактов и кладов. Многочисленные системы безопасности, всем известные рамки – одна из версий технологии поиска металла. Настройки этих рамок ориентированы на поиск оружия и аналогичных опасных предметов.
Катушка
Очень важный узел аппаратуры поиска металлов – катушка или рамка. Это чаще всего обмотка специальной конфигурации, задача которой сформировать электромагнитное поле и уловить его реакцию на обнаружение инородного для среды поиска металлического тела.
Многие любители изготавливают каркасы катушек самостоятельно. Это делается из соображений экономии средств или в надежде получить более качественный инструмент авторской конструкции.
Для этого используются подручные средства – пластмассовые изделия, фанера и даже заполнение монтажной строительной пеной собранной обмотки.
Оператор поиска или кладоискатель стремится найти наиболее эффективную технику работы с металлоискателем, выбирая нужные режимы работы электроники и правильные приёмы манипуляций катушкой.
Электронная схема
Логический элемент металлоискателя – электронная схема. Она выполняет много функций:
- Первая задача этого компонента заключается в создании электромагнитного сигнала нужного формата, который при помощи катушки преобразуется в поле.
- Вторая задача электронной схемы – анализ улавливаемых рамкой изменений поля, их обработка.
- Третья задача – подача информирующего сигнала оператору – звуком, светом, показаниями индикаторов и приборов.
Многие электронные устройства достаточно просты, их сборку может выполнить даже новичок. Полученное устройство будет работоспособным без настройки, если сборщик в точности выполнил рекомендации разработчика такой схемы.