Среднеплавкие металлы
Среднеплавкие металлы начинают переходить из твердого в жидкое состояние при температуре от 600°C до 1600°C. Они используются для изготовления плит, арматур, блоков и других металлических конструкций, пригодных для строительства. К этой группе металлов относятся железо, медь, алюминий, они также входят в состав многих сплавов. Медь добавляют в сплавы драгоценных металлов, таких как золото, серебро, платина. Золото 750 пробы на 25% состоит из лигатурных металлов, в том числе и меди, которая придает ему красноватый оттенок. Температура плавления этого материала равна 1084 °C. А алюминий начинает плавиться при относительно низкой температуре, составляющей 660 градусов Цельсия. Это легкий пластичный и недорогой металл, который не окисляется и не ржавеет, поэтому широко используется при изготовлении посуды. Температура плавления железа равна 1539 градусов. Это один из самых популярных и доступных металлов, его применение распространено в строительстве и автомобильной промышленности. Но ввиду того, что железо подвергается коррозии, его нужно дополнительно обрабатывать и покрывать защитным слоем краски, олифы или не допускать попадания влаги.
Теплота плавления
Теперь перейдем от определения плавления к формуле, которая количественно описывает этот процесс. Когда происходит плавление, то внешний подвод тепла расходуется на разрыв связей в твердом теле и его перевод в жидкое состояние. Энергия, которую необходимо затратить, чтобы определенное количество твердого вещества, находящегося при температуре плавления, перешло в жидкое состояние называется теплотой плавления. Формула в этом случае записывается так: λ=Q/m, где Q — количество теплоты, m — масса тела.
Значение теплоты плавления λ зависит от физико-химических свойств материала. Например, для льда это значение составляет 333,55 Дж/г или 6,02 кДж/моль, а для железа 13,81 кДж/моль. Значения приведены при давлении 1 атмосфера.
Тугоплавкие металлы
Температура тугоплавких металлов выше 1600°C. Это вольфрам, титан, платина, хром и другие. Их используют в качестве источников света, машинных деталей, смазочных материалов, а также в ядерной промышленности. Из них изготавливают проволоки, высоковольтные провода и используют для расплавки других металлов с более низкой температурой плавления. Платина начинает переходить из твердого в жидкое состояние при температуре 1769 градусов, а вольфрам – при температуре 3420°C.
Ртуть – единственный металл, находящийся в жидком состоянии при обычных условиях, а именно, нормальном атмосферном давлении и средней температуре окружающей среды. Температура плавления ртути составляет минус 39°C. Этот металл и его пары являются ядовитыми, поэтому он используется только в закрытых емкостях или в лабораториях. Распространенное применение ртути – градусник для измерения температуры тела.
Плотность.
Это – одна из важнейших характеристик металлов и сплавов. по плотности металлы делятся на следующие группы:
легкие
(плотность не более 5 г/см 3) – магний, алюминий, титан и др.:
тяжелые
– (плотность от 5 до 10 г/см 3) – железо, никель, медь, цинк, олово и др. (это наиболее обширная группа);
очень тяжелые
(плотность более 10 г/см 3) – молибден, вольфрам, золото, свинец и др.
В таблице 2 приведен значения плотности металлов. (Это и последующие таблицы характеризуют свойства тех металлов, которые составляют основу сплавов для художественного литья).
Таблица 2. Плотность металла.
Температура плавления.
В зависимости от температуры плавления металл подразделяют на следующие группы:
легкоплавкие
(температура плавления не превышает 600 o С) – цинк, олово, свинец, висмут и др.;
среднеплавкие
(от 600 o С до 1600 o С) – к ним относятся почти половина металлов, в том числе магний, алюминий, железо, никель, медь, золото;
тугоплавкие
(более 1600 o С) – вольфрам, молибден, титан, хром и др.
Ртуть относится к жидкостям.
При изготовлении художественных отливок температура плавления металла или сплава определяет выбор плавильного агрегата и огнеупорного формовочного материала. При введении в металл добавок температура плавления, как правило, понижается.
Таблица 3. Температура плавления и кипения металлов.
Удельная теплоемкость. Это количество энергии, необходимое для повышения температуры единицы массы на один градус. Удельная теплоемкость уменьшается с увеличением порядкового номера элемента в таблице Менделеева. Зависимость удельной теплоемкости элемента в твердом состоянии от атомной массы описывается приближенно законом Дюлонга и Пти:
где, m a
– атомная масса;
c m
– удельная теплоемкость (Дж/кг * o С).
В таблице 4 приведены значения удельной теплоемкости некоторых металлов.
Таблица 4. Удельная теплоемкость металлов.
Скрытая теплота плавления металлов. Это характеристика (таблица 5) наряду с удельной теплоемкости металлов в значительной степени определяет необходимую мощность плавильного агрегата. Для расплавления легкоплавкого металла иногда требуется больше тепловой энергии, чем для тугоплавкого. Например, для нагревания меди от 20 до 1133 o С потребуется в полтора раза меньше тепловой энергии, чем для нагревания такого же количества алюминия от 20 до 710 o C.
Таблица 5. Скрытая теплота металла
Теплоемкость. Теплоемкость характеризует передачу тепловой энергии от оной части тела к другой, а точнее, молекулярной перенос теплоты в сплошной среде, обусловленный наличием градиента температуры. (таблица 6)
Таблица 6. Коэффициент теплопроводности металлов при 20 o С
Качество художественного литья тесно связано с теплопроводностью металла. В процессе выплавке важно не только обеспечить достаточно высокую температуру металла, но и добиться равномерного распределения температуры во всем объеме жидкой ванны. Чем выше теплопроводность, тем равномернее распределена температура. При электродуговой плавке, несмотря на высокую теплопроводность большинства металлов, перепад температуры по сечению ванны достигает 70-80 o С, а для металла с низкой теплопроводностью этот перепад может достигать 200 o С и более.
Читать также: Как восстановить резьбу в алюминиевом корпусе
Благоприятные условия для выравнивания температуры создаются при индукционной плавке.
Коэффициент теплового расширения
. Эта величина, характеризующая изменение размеров образца длиной 1 м при нагревании на 1 o С, имеет важное значение при эмальерных работах (таблица 7)
Коэффициенты теплового расширения металлической основы и эмали должны иметь по возможности близкие значения, чтобы после обжига эмаль не растрескивалась. Большинство эмалей, представляющих твердый коэффициент оксидов кремния и других элементов, имеют низкий коэффициент теплового расширения. Как показала практика, эмали очень хорошо держаться на железе, золоте, менее прочно – на меди и серебре. Можно полагать, что титан – весьма подходящий материал для эмалирования.
Таблица 7. Коэффициент теплового расширения металлов.
Отражательная способность. Это – способность металла отражать световые волны определенной длины, которая воспринимает человеческим глазом как цвет (таблице 8). Цвета металла указаны в таблице 9.
Таблица 8. Соответствие между цветом и длиной волны.
Таблица 9. Цвета металлов.
Чистые металлы в декоративно-прикладном искусстве практически не применяются. Для изготовления различных изделий используют сплавы, цветовые характеристики которых значительно отличаются от цвета основного металла.
В течении долгого времени накапливался огромный опыт применения различных литейных сплавов для изготовления украшений, бытовых предметов, скульптур и многих других видов художественного литья. Однако до сих пор еще не раскрыта взаимосвязь между строением сплава и его отражательной способностью.
Каждый металл или сплав обладает уникальными свойствами, в число которых входит температура плавления. При этом объект переходит из одного состояния в другое, в конкретном случае становится из твёрдого жидким. Чтобы его расплавить, необходимо подвести к нему тепло и нагревать до достижения нужной температуры. В момент, когда достигается нужная точка температуры данного сплава, он ещё может остаться в твёрдом состоянии. При продолжении воздействия начинает плавиться.
Наиболее низкая температура плавления у ртути – она плавится даже при -39 °C, самая высокая у вольфрама – 3422 °C. Для сплавов (стали и других) определить точную цифру крайне сложно. Все зависит от соотношения компонентов в них. У сплавов она записывается как числовой промежуток.
Капиллярный метод
Температура плавления, определенная капиллярным методом, представляет собой температуру, при которой последняя твердая частичка уплотненного столбика вещества в капилляре переходит в жидкую фазу.
Прибор 1.
Составными частями прибора являются:
- стеклянный сосуд, содержащий жидкость (например, воду, вазелиновое или силиконовое масло), используемый в качестве бани и оснащенный подходящим устройством для нагрева. Жидкость в бане следует выбирать в зависимости от требуемой температуры;
- устройство для перемешивания, обеспечивающее однородность температуры внутри бани;
- подходящий термометр с ценой деления не более 0,5 °С. Разность между верхним и нижним делениями термометра в области измеряемой температуры – не более 100 °С;
- запаянные с одного конца капилляры из нейтрального прочного стекла диаметром от 0,9 до 1,1 мм, толщиной стенок от 0,10 до 0,15 мм и длиной 10 см.
Прибор 2.
Составными частями прибора являются:
- круглодонная колба из термостойкого стекла вместимостью от 100 до 150 мл; длина горла колбы 20 см; диаметр горла – от 3 до 4 см;
- пробирка из термостойкого стекла, вставленная в колбу и отстоящая от дна колбы на расстоянии 1,0 см; диаметр пробирки от 2,0 до 2,5см;
- термометр ртутный стеклянный укороченный с ценой деления 0,5°С, вставленный во внутреннюю пробирку так, чтобы конец его отстоял от дна пробирки на 1,0 см;
- источник нагрева (газовая горелка, электрический обогрев);
- запаянные с одного конца капилляры из нейтрального прочного стекла диаметром от 0,9 до 1,1 мм, толщиной стенок от 0,10 до 0,15 мм и длиной от 6 до 8 см.
Колбу наполняют на ¾ объема соответствующей жидкостью:
- вазелиновое масло или жидкие силиконы; серная кислота концентрированная – для веществ с температурой плавления от 80 до 260 °С;
- раствор калия сульфата в серной кислоте концентрированной (3:7 по массе) – для веществ с температурой плавления выше 260 °С;
- вода очищенная – для веществ с температурой плавления ниже 80°С.
Примечания.
- Стеклянные трубки, из которых вытягивают капилляры, должны быть вымыты и высушены.
- При приготовлении раствора калия сульфата в серной кислоте концентрированной смесь кипятят в течение 5 мин при энергичном перемешивании. При недостаточном перемешивании могут образоваться 2 слоя, в результате чего может произойти закипание смеси, приводящее к взрыву.
Прибор 3.
Прибор для определения температуры плавления с диапазоном измерений в пределах от 20 до 360 °С с электрическим обогревом типа ПТП или типа ПТП-М (рис. 1) с диапазоном измерений в пределах от 20 до 340 °С.
Составными частями прибора являются:
- основание со щитком управления и номограммой;
- стеклянный блок-нагреватель, обогрев которого осуществляется константановой проволокой, навитой бифилярно;
- оптическое приспособление;
- приспособление для установки термометра;
- приспособление для установки капилляров;
- термометр укороченный с ценой деления 0,5 ºС;
- источник нагрева (электрический обогрев);
- капилляры длиной 20 см для прибора типа ПТП; капилляры длиной 8см для прибора типа ПТП-М.
Принцип действия прибора основан на температурном воздействии на исследуемые вещества в вертикально установленных капиллярах, запаянных с нижнего конца.
Допускается применение других приборов, использующих капиллярный метод, если точность и правильность измерений будут не хуже, чем в случае применения приборов, описанных выше.
Прибор ПТП-М для определения температуры плавления
Рисунок 1– Прибор ПТП-М для определения температуры плавления
Методика. Если нет других указаний в фармакопейной статье, тонкоизмельченное в порошок вещество сушат или при температуре от 100 до 105 °С в течение 2 ч или в эксикаторе над серной кислотой в течение 24 ч, или в вакууме над безводным силикагелем в течение 24 ч.
Достаточное количество вещества помещают в капилляр до получения уплотненного столбика высотой около 5 мм. Необходимое уплотнение вещества при заполнении капилляра можно получить, если его несколько раз бросить запаянным концом вниз в стеклянную трубку длиной 0,5 — 1,0 м, поставленную вертикально на стекло. Капилляр с веществом сохраняют до начала определения в эксикаторе.
Повышают температуру в бане (приборе). При температуре приблизительно на 10 °С ниже предполагаемой температуры плавления регулируют нагрев прибора так, чтобы скорость подъема температуры на протяжении всего испытания составляла около 1 °С в мин. Когда температура достигнет значения на 5 — 10 °С ниже предполагаемой температуры плавления, капилляр с веществом прикрепляют к термометру так, чтобы его запаянный конец находился на уровне центра шарика термометра, и помещают в прибор.
Продолжают нагревание со скоростью:
- для устойчивых при нагревании веществ при определении температуры плавления ниже 100 °С – со скоростью от 0,5 до 1,0 °С в 1мин;
- при определении температуры плавления от 100 до 150 °С – от 1,0 до 1,5 °С в 1 мин;
- при определении температуры плавления выше 150 °С – от 1,5 до 2,0°С в 1 мин;
- для неустойчивых при нагревании веществ от 2,5 до 3,5 °С в 1мин.
Отмечают температуру, при которой последняя твердая частичка перейдет в жидкую фазу.
Проводят не менее двух определений. За температуру плавления принимают среднее арифметическое значение нескольких определений, проведенных в одинаковых условиях и отличающихся друг от друга не более чем на 1 °С.
Примечание. Во время определения температуры плавления колба и пробирка должны быть открыты.
Как происходит процесс
Элементы, какими бы они ни были: золото, железо, чугун, сталь или любой другой – плавятся примерно одинаково. Это происходит при внешнем или внутреннем нагревании. Внешнее нагревание осуществляется в термической печи. Для внутреннего применяют резистивный нагрев, пропуская электрический ток или индукционный нагрев в электромагнитном поле высокой частоты
. Воздействие при этом примерно одинаковое.
Когда происходит нагревание
, усиливается амплитуда тепловых колебаний молекул. Появляются
структурные дефекты решётки
, сопровождаемые разрывом межатомных связей. Период разрушения решётки и скопления дефектов и называется плавлением.
В зависимости от градуса, при котором плавятся металлы, они разделяются на:
- легкоплавкие – до 600 °C: свинец, цинк, олово;
- среднеплавкие – от 600 °C до 1600 °C: золото, медь, алюминий, чугун, железо и большая часть всех элементов и соединений;
- тугоплавкие – от 1600 °C: хром, вольфрам, молибден, титан.
В зависимости от того, каков максимальный градус, подбирается и плавильный аппарат. Он должен быть тем прочнее, чем сильнее будет нагревание.
Вторая важная величина – градус кипения. Это параметр, при достижении которого начинается кипение жидкостей. Как правило, она в два раза выше градуса плавления. Эти величины прямо пропорциональны между собой и обычно их приводят при нормальном давлении.
Если давление увеличивается, величина плавления тоже увеличивается. Если давление уменьшается, то и она уменьшается.
Таблица характеристик
Металлы и сплавы – непременная основа для ковки
, литейного производства, ювелирной продукции и многих других сфер производства. Чтобы не делал мастер (
ювелирные украшения из золота
, ограды из чугуна, ножи из стали или
браслеты из меди)
, для правильной работы ему необходимо знать температуры, при которых плавится тот или иной элемент.
Чтобы узнать этот параметр, нужно обратиться к таблице. В таблице также можно найти и градус кипения.
Среди наиболее часто применяемых в быту элементов показатели температуры плавления такие:
- алюминий – 660 °C;
- температура плавления меди – 1083 °C;
- температура плавления золота – 1063 °C;
- серебро – 960 °C;
- олово – 232 °C. Олово часто используют при пайке, так как температура работающего паяльника составляет как раз 250–400 градусов;
- свинец – 327 °C;
- температура плавления железо – 1539 °C;
- температура плавления стали (сплав железа и углерода) – от 1300 °C до 1500 °C. Она колеблется в зависимости от насыщенности стали компонентами;
- температура плавления чугуна (также сплав железа и углерода) – от 1100 °C до 1300 °C;
- ртуть – -38,9 °C.
Как понятно из этой части таблицы, самый легкоплавкий металл – ртуть, которая при плюсовых температурах уже находится в жидком состоянии.
Градус кипения всех этих элементов почти вдвое, а иногда и ещё выше градуса плавления. Например, у золота он 2660 °C, у алюминия
– 2519 °C
, у железа – 2900 °C, у меди – 2580 °C, у ртути – 356,73 °C.
У сплавов типа стали, чугуна и прочих металлов расчёт примерно такой же и зависит от соотношения компонентов в сплаве.
Максимальная температура кипения у металлов – у рения
– 5596 °C
. Наибольшая температура кипения – у наиболее тугоплавящихся материалов.
Бывают таблицы, в которых также указана плотность металлов
. Самым лёгким металлом является литий, самым тяжёлым – осмий.
У осмия плотность выше, чем у урана
и плутония, если рассматривать её при комнатной температуре. К лёгким металлам относятся: магний, алюминий, титан. К тяжёлым относится большинство распространённых металлов: железо, медь, цинк, олово и многие другие. Последняя группа – очень тяжёлые металлы, к ним относятся: вольфрам, золото, свинец и другие.
Читать также: Разметка потолка лазерным уровнем
Ещё один показатель, встречающийся в таблицах – это теплопроводность металлов
. Хуже всего тепло проводит нептуний, а лучший по теплопроводности металл – серебро. Золото, сталь, железо, чугун и прочие элементы находится посередине между этими двумя крайностями. Чёткие характеристики для каждого можно найти в нужной таблице.
Температура плавления, наряду с плотностью, относится к физическим характеристикам металлов
.
Температура плавления металла
– температура, при которой металл переходит из твердого состояния, в котором находится в нормальном состоянии (кроме ртути), в жидкое состояние при нагревании. При плавлении объем металла практически не изменяется, поэтому на температуру плавления нормальное
атмосферное давление не влияет
.
Температура плавления металлов находится в диапазоне от -39 градусов Цельсия до +3410 градусов
. Для большинства металлов температура плавления высокая, однако, некоторые металлы можно расплавить в домашних условиях при нагревании на обычной горелке (олово, свинец).
Классификация металлов по температуре плавления
- Легкоплавкие металлы
, температура плавления которых колеблется
до 600
градусов Цельсия, например
цинк, олово, висмут
. - Среднеплавкие металлы
, которые плавятся при температуре
от 600 до 1600
градусов Цельсия: такие как
алюминий, медь, олово, железо
. - Тугоплавкие металлы
, температура плавления которых достигает
более 1600
градусов Цельсия –
вольфрам, титан, хром
и др. - – единственный металл, находящийся при обычных условиях (нормальное атмосферное давление, средняя температура окружающей среды) в жидком состоянии. Температура плавления ртути составляет порядка -39 градусов
по Цельсию.
Таблица температур плавления металлов и сплавов
650
1000
Металл | |
Алюминий | 660,4 |
Вольфрам | 3420 |
Дюралюмин | |
Железо | 1539 |
Золото | 1063 |
Иридий | 2447 |
Калий | 63,6 |
Кремний | 1415 |
Латунь | |
Легкоплавкий сплав | 60,5 |
Магний | 650 |
Медь | 1084,5 |
Натрий | 97,8 |
Никель | 1455 |
Олово | 231,9 |
Платина | 1769,3 |
Ртуть | –38,9 |
Свинец | 327,4 |
Серебро | 961,9 |
Сталь | 1300-1500 |
Цинк | 419,5 |
Чугун | 1100-1300 |
При плавлении металла для изготовления металлических изделий-отливок от температуры плавления зависит выбор оборудования, материала для формовки металла и др. Следует также помнить, что при легировании металла другими элементами температура плавления чаще всего снижается
.
Не стоит путать понятия «температура плавления металла» и «температура кипения металла» – для многих металлов эти характеристики существенно отличаются: так, серебро плавится при температуре 961 градус по Цельсию, а закипает только при достижении нагрева до 2180 градусов.
Плавление металла – это определенный термодинамический процесс, при котором кристаллическая решетка металла разрушается и он переходит из твердого фазового состояния в жидкое.
Температура плавления металлов – показатель температуры нагреваемого металла, при достижении которой начинается процесс фазового перехода (плавления). Сам процесс обратный кристаллизации и неразрывно связан с ней. Для того чтобы расплавить металл? его необходимо нагреть, используя внешний источник тепла до температуры плавления, а затем продолжить подвод теплоты для преодоления энергии фазового перехода. Дело в том, что само значение температуры плавления металлов указывает на температуру, при которой материал будет находиться в фазовом равновесии, на границе между жидкостью и твердым телом. При такой температуре чистый металл может существовать одновременно как в твердом, так и в жидком состоянии. Для осуществления процесса плавления необходимо перегреть металл немного больше равновесной температуры, чтобы обеспечить положительный термодинамический потенциал. Дать своеобразный толчок процессу.
Температура плавления металлов постоянна только для чистых веществ. Наличие примесей будет смещать равновесный потенциал в ту или иную сторону. Это происходит потому, что металл с примесями формирует иную кристаллическую решетку, и силы взаимодействия атомов в них будут отличаться от тех, которые присутствуют в чистых материалах.В зависимости от величины температуры плавления, металлы делят на легкоплавкие (до 600°С, такие как галлий, ртуть) , среднеплавкие (600-1600°С, медь, алюминий) и тугоплавкие (>1600°С, вольфрам, молибден).
В современном мире чистые металлы используют редко в силу того, что они имеют ограниченный диапазон физических свойств. Промышленность давно и плотно использует различные комбинации металлов – сплавы, разновидностей и характеристик которых гораздо больше. Температура плавления металлов, входящих в состав различных сплавов, будет также отличаться от температуры плавления их сплава. Разные концентрации веществ обуславливают порядок их плавления или кристаллизации. Но существуют равновесные концентрации, при которых металлы, входящие в состав сплава, затвердевают или плавятся одновременно, то есть ведут себя как однородный материал. Такие сплавы называются эвтектическими.
Знать температуру плавления очень важно при работе с металлом, эта величина необходима как в производстве, для расчета параметров сплавов, так и при эксплуатации металлических изделий, когда температура фазового перехода материала, из которого изделие изготовлено, определяет ограничения при его использовании. Для удобства эти данные сведены в единую таблицу. Таблица плавления металлов – сводный результат физических исследований характеристик различных металлов. Существуют также подобные таблицы и для сплавов. Температура плавления металлов также существенно зависит и от давления, поэтому данные таблицы актуальны для конкретного значения давления (обычно это нормальные условия, когда давление равно 101.325 кПа). Чем выше давление, тем выше температура плавления, и наоборот.
В металлургической промышленности одним из основных направлений считается литье металлов и их сплавов по причине дешевизны и относительной простоты процесса. Отливаться могут формы с любыми очертаниями различных габаритов, от мелких до крупных; это подходит как для массового, так и для индивидуального производства.
Литье является одним из древнейших направлений работы с металлами, и начинается примерно с бронзового века: 7−3 тысячелетия до н. э. С тех пор было открыто множество материалов, что приводило к развитию технологии и повышению требований к литейной промышленности.
В наши дни существует много направлений и видов литья, различающихся по технологическому процессу. Одно остается неизменным — физическое свойство металлов переходить из твердого состояния в жидкое, и важно знать то, при какой температуре начинается плавление разных видов металлов и их сплавов.
Читать также: Бензопила партнер 350 где находится сапун
Плавление — фазовый переход первого рода
Согласно своему определению, плавление является переходом первого рода, поскольку при нем происходит поглощение теплоты. При этом температура всей системы в процессе плавления не изменяется и является постоянной величиной. Этот факт объясняется тем, что подводимое к телу тепло расходуется не на увеличение кинетической энергии атомов и молекул, а на разрыв прочных химических связей между ними. Только после того, как все связи в твердом теле будут разрушены, дальнейший подвод тепла к уже жидкому веществу приведет к увеличению его температуры.
Сам процесс плавления не происходит спонтанно, а развивается в определенном промежутке времени, когда жидкая и твердая фазы сосуществуют в равновесии друг с другом.
Таким образом, плавление — это эндотермический процесс, что означает, что он идет с поглощением теплоты. Обратный процесс, при котором жидкость затвердевает, называется кристаллизацией.
Процесс плавления металла
Данный процесс обозначает собой переход вещества из твердого состояния в жидкое. При достижении точки плавления металл может находиться как в твердом, так и в жидком состоянии, дальнейшее возрастание приведет к полному переходу материала в жидкость.
То же самое происходит и при застывании — при достижении границы плавления вещество начнет переходить из жидкого состояния в твердое, и температура не изменится до полной кристаллизации.
При этом следует помнить, что данное правило применимо только для чистого металла. Сплавы не имеют четкой границы температур и совершают переход состояний в некотором диапазоне:
- Солидус — линия температуры, при которой начинает плавиться самый легкоплавкий компонент сплава.
- Ликвидус — окончательная точка плавления всех компонентов, ниже которой начинают появляться первые кристаллы сплава.
Точно измерить температуру плавления таких веществ невозможно, точкой перехода состояний указывается числовой промежуток.
В зависимости от температуры, при которой начинается плавление металлов, их принято разделять на:
- Легкоплавкие, до 600 °C. К ним относятся олово, цинк, свинец и другие.
- Среднеплавкие, до 1600 °C. Большинство распространенных сплавов, и такие металлы как золото, серебро, медь, железо, алюминий.
- Тугоплавкие, свыше 1600 °C. Титан, молибден, вольфрам, хром.
Также существует и температура кипения — точка, при достижении которой расплавленный металл начнет переход в газообразное состояние. Это очень высокая температура, как правило, в 2 раза превышающая точку расплава.
Влияние давления
Температура плавления и равная ей температура затвердевания зависят от давления, возрастая с его повышением. Это обусловлено тем, что при повышении давления атомы сближаются между собой, а для разрушения кристаллической решетки их нужно отдалить. При повышенном давлении требуется большая энергия теплового движения и соответствующая ей температура плавления увеличивается.
Существуют исключения, когда температура, необходимая для перехода в жидкое состояние, при повышенном давлении уменьшается. К таким веществам относят лёд, висмут, германий и сурьма.
Кинетическая и потенциальная энергия
Чтобы понять, что такое плавление в физике, необходимо ясно представлять соотношение кинетической и потенциальной энергии в твердых и жидких телах.
Потенциальная энергия характеризует работу, которую нужно затратить, чтобы распылить данное тело в пространстве на составляющие его частицы. Для описания этой величины вводят понятие энергии связи, которая обозначает работу, необходимую для того, чтобы оторвать от тела один атом или молекулу и удалить его/ее на бесконечность. Например, типичные значения энергии связи для твердых тел составляют несколько электрон-вольт, эти же значения для жидкостей на порядок меньше.
Кинетическая энергия характеризует интенсивность движения атомов и молекул. В случае конденсированных сред эта энергия прямо пропорционально зависит от температуры.
В твердых телах кинетическая энергия при комнатных температурах составляет несколько сотых электрон-вольт, то есть она в 100 раз меньше потенциальной. Атомы и молекулы в твердых телах находятся как бы в потенциальной яме и колеблются около устойчивых определенных положений. Выбраться они могут из этих положений, если флуктуации кинетической энергии окажутся значительными, или если сама потенциальная яма невелика, например, когда поблизости имеется какой-либо дефект.
Кинетическая энергия атомов и молекул в жидкости приблизительно равна их потенциальной энергии, то есть составляет несколько десятых электрон-вольт при комнатной температуре. Это означает, что каждая частица, составляющая жидкость, постоянно перепрыгивает из одного места в другое. Хорошим доказательством этого факта является Броуновское движение.
Таблица температур плавления
Любому человеку, связанному с металлургической промышленностью, будь то сварщик, литейщик, плавильщик или ювелир, важно знать температуры, при которых происходит расплав материалов, с которыми он работает. В нижеприведенной таблице указаны точки плавления наиболее распространенных веществ.
Таблица температур плавления металлов и сплавов
Название | T пл, °C |
Алюминий | 660,4 |
Медь | 1084,5 |
Олово | 231,9 |
Цинк | 419,5 |
Вольфрам | 3420 |
Никель | 1455 |
Серебро | 960 |
Золото | 1064,4 |
Платина | 1768 |
Титан | 1668 |
Дюралюминий | 650 |
Углеродистая сталь | 1100−1500 |
Чугун | 1110−1400 |
Железо | 1539 |
Ртуть | -38,9 |
Мельхиор | 1170 |
Цирконий | 3530 |
Кремний | 1414 |
Нихром | 1400 |
Висмут | 271,4 |
Германий | 938,2 |
Жесть | 1300−1500 |
Бронза | 930−1140 |
Кобальт | 1494 |
Калий | 63 |
Натрий | 93,8 |
Латунь | 1000 |
Магний | 650 |
Марганец | 1246 |
Хром | 2130 |
Молибден | 2890 |
Свинец | 327,4 |
Бериллий | 1287 |
Победит | 3150 |
Фехраль | 1460 |
Сурьма | 630,6 |
карбид титана | 3150 |
карбид циркония | 3530 |
Галлий | 29,76 |
Помимо таблицы плавления, существует много других вспомогательных материалов. Например, ответ на вопрос, какова температура кипения железа лежит в таблице кипения веществ. Помимо кипения, у металлов есть ряд других физических свойств, как прочность.
Открытый капиллярный метод
Используют стеклянный капилляр, открытый с обоих концов, длиной около 80 мм, наружным диаметром от 1,4 до 1,5 мм и внутренним диаметром от 1,0 до 1,2 мм.
Вещество, предварительно подготовленное, как указано в фармакопейной статье, помещают в каждый из 5 капилляров в количестве, достаточном для формирования в каждом капилляре столбика высотой около 10 мм. Капилляры оставляют на определенное время при температуре, указанной в фармакопейной статье.
Прикрепляют один из капилляров к термометру с ценой деления 0,2 °С таким образом, чтобы вещество находилось около шарика термометра.
Термометр с прикрепленным капилляром помещают в стакан таким образом, чтобы расстояние между дном стакана и нижней частью шарика термометра составляло 1 см. Стакан наполняют водой до высоты слоя 5 см.
Повышают температуру воды со скоростью 1 °С в мин.
За температуру плавления принимают температуру, при которой вещество начинает подниматься по капилляру. В тех случаях, когда столбик вещества не поднимается в капилляре, за температуру плавления принимают температуру, при которой столбик вещества в капилляре становится прозрачным.
Повторяют эту операцию с 4 другими капиллярами и рассчитывают результат как среднее арифметическое из 5 значений. Расхождение между всеми значениями не должно превышать 1 °С.
Прочность металлов
Помимо способности перехода из твердого в жидкое состояние, одним из важных свойств материала является его прочность — возможность твердого тела сопротивлению разрушению и необратимым изменениям формы. Основным показателем прочности считается сопротивление возникающее при разрыве заготовки, предварительно отожженной. Понятие прочности не применимо к ртути, поскольку она находится в жидком состоянии. Обозначение прочности принято в МПа — Мега Паскалях.
Существуют следующие группы прочности металлов:
- Непрочные. Их сопротивление не превышает 50МПа. К ним относят олово, свинец, мягкощелочные металлы
- Прочные, 50−500МПа. Медь, алюминий, железо, титан. Материалы этой группы являются основой многих конструкционных сплавов.
- Высокопрочные, свыше 500МПа. Например, молибден и вольфрам.
Таблица прочности металлов
Металл | Сопротивление, МПа |
Медь | 200−250 |
Серебро | 150 |
Олово | 27 |
Золото | 120 |
Свинец | 18 |
Цинк | 120−140 |
Магний | 120−200 |
Железо | 200−300 |
Алюминий | 120 |
Титан | 580 |
Наиболее распространенные в быту сплавы
Как видно из таблицы, точки плавления элементов сильно разнятся даже у часто встречающихся в быту материалов.
Так, минимальная температура плавления у ртути -38,9 °C, поэтому в условиях комнатной температуры она уже в жидком состоянии. Именно этим объясняется то, что бытовые термометры имеют нижнюю отметку в -39 градусов Цельсия: ниже этого показателя ртуть переходит в твердое состояние.
Припои, наиболее распространенные в бытовом применении, имеют в своем составе значительный процент содержания олова, имеющего точку плавления 231.9 °C, поэтому большая часть припоев плавится при рабочей температуре паяльника 250−400°C.
Помимо этого, существуют легкоплавкие припои с более низкой границей расплава, до 30 °C и применяются тогда, когда опасен перегрев спаиваемых материалов. Для этих целей существуют припои с висмутом, и плавка данных материалов лежит в интервале от 29,7 — 120 °C.
Расплавление высокоуглеродистых материалов в зависимости от легирующих компонентов лежит в границах от 1100 до 1500 °C.
Точки плавления металлов и их сплавов находятся в очень широком температурном диапазоне, от очень низких температур (ртуть) до границы в несколько тысяч градусов. Знание этих показателей, а так же других физических свойств очень важно для людей, которые работают в металлургической сфере. Например, знание того, при какой температуре плавится золото и другие металлы пригодятся ювелирам, литейщикам и плавильщикам.
Метод каплепадения
В данном методе определяют температуру, при которой в условиях, приведенных ниже, первая капля расплавленного испытуемого вещества падает из чашечки.
Прибор. Прибор состоит из двух металлических гильз (А и Б), соединенных посредством резьбы. Гильза (А) прикреплена к ртутному термометру. В нижней части гильзы (Б) с помощью двух уплотнителей (Г) свободно закреплена металлическая чашечка (Д). Точное положение чашечки определяется фиксаторами (Е) длиной 2 мм, которые используются также для центровки термометра. Отверстие (В) в стенке гильзы (Б) предназначено для выравнивания давления. Отводящая поверхность чашечки должна быть плоской, а края выходного отверстия расположены под прямым углом к поверхности. Нижняя часть ртутного термометра имеет форму и размер, как показано на рис.2. Термометр градуирован от 0 до 110 ºС и расстояние на шкале в 1 мм соответствует разности температур в 1 ºС. Ртутный шарик термометра имеет диаметр (3,5 ± 0,2) мм и высоту (6,0 ± 0,3) мм.
Прибор устанавливают по оси пробирки длиной около 200 мм и наружным диаметром около 40 мм.
Прибор прикрепляют к пробирке с помощью пробки, в которую вставлен термометр и которая имеет боковую прорезь. Отверстие чашечки должно находиться на расстоянии около 15 мм от дна пробирки. Все устройство погружают в стакан вместимостью около 1 л, заполненный водой. Дно пробирки должно находиться на расстоянии около 25 мм от дна стакана. Уровень воды должен достигать верхней части гильзы (А). Для равномерного распределения температуры в стакане используют мешалку.
Прибор для определения температуры каплепадения
Рисунок 2
.Размеры приведены в мм
Методика. Заполняют чашечку до краев нерасплавленным испытуемым веществом, если нет других указаний в фармакопейной статье. Избыток вещества удаляют с обеих сторон шпателем. После соединения гильз (А) и (Б) проталкивают чашечку внутрь на ее место в гильзе (Б) до упора. Удаляют шпателем вещество, выдавленное термометром. Прибор помещают на водяную баню, как описано выше. Водяную баню нагревают до температуры примерно на 10 ºС ниже предполагаемой температуры плавления и устанавливают скорость нагрева около 1 ºС в минуту. Отмечают температуру падения первой капли. Проводят не менее трех определений, каждый раз с новым образцом вещества. Разность между показаниями не должна превышать 3 °С. Рассчитывают среднее арифметическое из полученных значений.
Скачать в PDF ОФС.1.2.1.0011.15 Температура плавления