Отвечаем на вопрос: проводит ли электрический ток дистиллированная вода?

Все материалы, существующие в природе, различаются своими электрическими свойствами. Таким образом, из всего многообразия физических веществ в отдельные группы выделяются диэлектрические материалы и проводники электрического тока.

Что представляют собой проводники?

Проводник – это такой материал, особенностью которого является наличие в составе свободно передвигающихся заряженных частиц, которые распространены по всему веществу.

Проводящими электрический ток веществами являются расплавы металлов и сами металлы, недистиллированная вода, раствор солей, влажный грунт, человеческое тело.

Металл – это самый лучший проводник электрического тока. Также и среди неметаллов есть хорошие проводники, например, углерод.

Все, существующие в природе проводники электрического тока, характеризуются двумя свойствами:

  • показатель сопротивления;
  • показатель электропроводности.

Сопротивление возникает из-за того, что электроны при движении испытывают столкновение с атомами и ионами, которые являются своеобразным препятствием. Именно поэтому проводникам присвоена характеристика электрического сопротивления. Обратной сопротивлению величиной является электропроводность.
Электропроводность – это характеристика (способность) физического вещества проводить ток. Поэтому свойствами надежного проводника являются низкое сопротивление потоку движущихся электронов и, следовательно, высокая электропроводность. То есть, лучший проводник характеризуется большим показателем проводимости.

Например кабельная продукция : медный кабель обладает большей электропроводностью по сравнению с алюминиевым.

Что представляют собой диэлектрики?

Диэлектрики – это такие физические вещества, в которых при заниженных температурах отсутствуют электрические заряды. В состав таких веществ входят лишь атомы нейтрального заряда и молекулы. Заряды нейтрального атома имеют тесную связь друг с другом, поэтому лишены возможности свободного перемещения по всему веществу.

Самым лучшим диэлектриком является газ. Другие непроводящие электрический ток материалы – это стеклянные, фарфоровые, керамические изделия, а также резина, картон, сухое дерево, смолы и пластмассы.

Диэлектрические предметы – это изоляторы, свойства которых главным образом зависимы от состояния окружающей атмосферы. Например, при высокой влажности некоторые диэлектрические материалы частично лишаются своих свойств.

Проводники и диэлектрики широко используются в сфере электротехники для решения различных задач.

Например, вся кабельно-проводниковая продукция изготавливается из металлов, как правило, из меди или алюминия. Оболочка проводов и кабелей полимерная, также, как и вилках всех электрических приборов. Полимеры – отличные диэлектрики, которые не допускают пропуска заряженных частиц.

Серебряные, золотые и платиновые изделия – очень хорошие проводники. Но их отрицательная характеристика, которая ограничивает использование, состоит в очень высокой стоимости.

Поэтому применяются такие вещества в сферах, где качество гораздо важнее цены, которая за него уплачивается (оборонная промышленность и космос).

Медные и алюминиевые изделия также являются хорошими проводниками, при этом имеют не столь высокую стоимость. Следовательно, использование медных и алюминиевых проводов распространено повсеместно.

Вольфрамовые и молибденовые проводники имеют менее хорошие свойства, поэтому используются в основном в лампочках накаливания и нагревательных элементах высокой температуры. Плохая электропроводность может существенно нарушить работу электросхемы.

Диэлектрики также различаются между собой своими характеристиками и свойствами. Например, в некоторых диэлектрических материалах также присутствуют свободные электрически заряды, пусть и в небольшом количестве. Свободные заряды возникают из-за тепловых колебаний электронов, т.е. повышение температуры все-таки в некоторых случаях провоцирует отрыв электронов от ядра, что понижает изоляционные свойства материала. Некоторые изоляторы отличаются большим числом «оторванных» электронов, что говорит о плохих изоляционных свойствах.

Самый лучший диэлектрик – полный вакуум, которого очень трудно добиться на планете Земля.

Полностью очищенная вода также имеет высокие диэлектрические свойства, но таковой даже не существует в реальности. При этом стоит помнить, что присутствие каких-либо примесей в жидкости наделяет ее свойствами проводника.

Главный критерий качества любого диэлектрического материала – это степень соответствия возложенным на него функциям в конкретной электрической схеме. Например, если свойства диэлектрика таковы, что утечка тока совсем незначительная и не приносит никакого ущерба работе схемы, то диэлектрик является надежным.

Что такое полупроводник?

Промежуточное место между диэлектриками и проводниками занимают полупроводники. Главное отличие проводников заключается в зависимости степени электропроводности от температуры и количества примесей в составе. При том материалу свойственны характеристики и диэлектрика, и проводника.

С ростом температуры электропроводность полупроводников растет, а степень сопротивления при этом падает. При понижении температуры сопротивление стремится к бесконечности. То есть, при достижении нулевой температуры полупроводники начинают вести себя как изоляторы.

Полупроводниками являются кремний и германий.

Способность проводить электрический ток характеризует электрическое сопротивление древесины. В общем случае полное сопротивление образца древесины, размещенного между двумя электродами, определяется как результирующее двух сопротивлений: объемного и поверхностного. Объемное сопротивление численно характеризует препятствие прохождению тока сквозь толщу образца, а поверхностное сопротивление определяет препятствие прохождению тока по поверхности образца. Показателями электрического сопротивления служат удельное объемное и поверхностное сопротивление. Первый из названных показателей имеет размерность ом на сантиметр (ом х см) и численно равен сопротивлению при прохождении тока через две противоположные грани кубика размером 1X1X1 см из данного материала (древесины). Второй показатель измеряется в омах и численно равен сопротивлению квадрата любого размера на поверхности образца древесины при подведении тока к электродам, ограничивающим две противоположные стороны этого квадрата. Электропроводность зависит от породы древесины и направления движения тока. В качестве иллюстрации порядка величии объемного и поверхностного сопротивления в табл. приведены некоторые данные.

сравнительные данные об удельном объемном и поверхностном сопротивлении древесины

Для характеристики электропроводности наибольшее значение имеет удельное объемное сопротивление. Сопротивление сильно зависит от влажности древесины. С повышением содержания влаги в древесине сопротивление уменьшается. Особенно резкое снижение сопротивления наблюдается при увеличении содержания связанной влаги от абсолютно сухого состояния до предела гигроскопичности. При этом удельное объемное сопротивление уменьшается в миллионы раз. Дальнейшее увеличение влажности вызывает падение сопротивления лишь в десятки раз. Это иллюстрируют данные табл.

удельное объемное сопротивление древесины в абсолютно сухом состоянии

ПородаУдельное объемное сопротивление, ом х см
поперек волоконвдоль волокон
Сосна2,3 х 10 151,8 х 10 15
Ель7,6 х 10 163,8 х 10 16
Ясень3,3 х 10 163,8 х 10 15
Граб8,0 х 10 161,3 х 10 15
Клен6,6 х 10 173,3 х 10 17
Береза5,1 х 10 162,3 х 10 16
Ольха1,0 х 10 179,6 х 10 15
Липа1,5 х 10 166,4 х 10 15
Осина1,7 х 10 168,0 х 10 15

влияние влажности на электрическое сопротивление древесины

Поверхностное сопротивление древесины также существенно снижается с увеличением влажности. Повышение температуры приводит к уменьшению объемного сопротивления древесины. Так, сопротивление древесины лжетсуги при повышении температуры с 22-23° до 44-45° С (примерно вдвое) падает в 2,5 раза, а древесины бука при повышении температуры с 20-21° до 50° С — в 3 раза. При отрицательных температурах объемное сопротивление древесины возрастает. Удельное объемное сопротивление вдоль волокон образцов березы влажностью 76% при температуре 0°С составило 1,2 х 10 7 ом см, а при охлаждении до температуры -24° С оно оказалось равным 1,02 х 10 8 ом см. Пропитка древесины минеральными антисептиками (например, хлористым цинком) уменьшает удельное сопротивление, в то время как пропитка креозотом мало отражается на электропроводности. Электропроводность древесины имеет практическое значение тогда, когда она применяется для столбов связи, мачт линий высоковольтных передач, рукояток электроинструментов и т. д. Кроме того, на зависимости электропроводности от влажности древесины основано устройство электрических влагомеров.

Штраф, если дерево упало по вашей вине

В случае, когда дерево упало на провод по вашей вине, на основании Ст. 9.7 КоАП РФ вам могут предъявить штрафные санкции. Если пострадала линия напряжением до 1 кВ, то за упавшее дерево придется выплачивать такую сумму [ ]:

  • Для населения в пределах от 1 до 1,5 тыс. руб.
  • Для должностных лиц в пределах от 2 до 3 тыс. руб.
  • Для юридических лиц в пределах от 20 до 30 тыс. руб.

Если дерево упало на линию напряжением более 1кВ, то виновные лица облагаются штрафом в размере:

  • Для населения в пределах от 1 до 2 тыс. руб.
  • Для должностных лиц в пределах от 3 до 4 тыс. руб.
  • Для юридических лиц в пределах от 30 до 40 тыс. руб.

Поэтому, если вы увидели, что ветки касаются проводов или угрожают падением на них, ни в коем разе не принимайтесь за их самостоятельную обрезку. Лучше сразу обратитесь в специализированную организацию за помощью. То же касается и остальных работ по вырубке в охранной зоне по каким-либо другим надобностям.

электрическая прочность древесины вдоль и поперек волокон

При влажности древесины сосны 10% получено следующую электрическую прочность в киловольтах на 1 см толщины: вдоль волокон 16,8; в радиальном направлении 59,1; в тангенциальном направлении 77,3 (определение производилось на образцах толщиной 3 мм). Как видим, электрическая прочность древесины вдоль волокон примерно в 3,5 раза меньше, чем поперек волокон; в радиальном направлении прочность меньше, чем в тангенциальном, так как сердцевинные лучи уменьшают пробивное напряжение. Повышение влажности с 8 до 15% (вдвое) снижает электрическую прочность поперек волокон примерно в 3 раза (в среднем для бука, березы и ольхи).

Электрическая прочность (в киловольтах на 1 см толщины) .других материалов следующая: слюды 1500, стекла 300, бакелита 200, парафина 150, трансформаторного масла 100, фарфора 100. С целью повышения электрической прочности древесины и снижения электропроводности при использовании в электропромышленности в качестве изолятора ее пропитывают олифой, трансформаторным маслом, парафином, искусственными смолами; эффективность такой пропитки видна из следующих данных о древесине березы: пропитка олифой увеличивает пробивное напряжение вдоль волокон на 30%, трансформаторным маслом — на 80%, парафином — почти вдвое по сравнению с пробивным напряжением для воздушно-сухой не пропитанной древесины.

диэлектрическая проницаемость некоторых материалов

МатериалДревесинаДиэлектрическая проницаемость
Воздух1,00Ель сухая: вдоль волокон3,06
в тангенциальном направлении1,98
Парафин2,00
в радиальном направлении1,91
Фарфор5,73
Слюда7,1-7,7Бук сухой: вдоль волокон3,18
в тангенциальном направлении2,20
Мрамор8,34
в радиальном направлении2,40
Вода80,1

Данные для древесины показывают заметное различие между диэлектрической проницаемостью вдоль и поперек волокон; в то же время диэлектрическая проницаемость поперек волокон в радиальном и тангенциальном направлении различается мало. Диэлектрическая проницаемость в поле высокой частоты зависит от частоты тока и влажности древесины. С увеличением частоты тока диэлектрическая проницаемость древесины бука вдоль волокон при влажности от 0 до 12% уменьшается, что особенно заметно для влажности 12%. С увеличением влажности древесины бука диэлектрическая проницаемость вдоль волокон увеличивается, что особенно заметно при меньшей частоте тока.

В поле высокой частоты древесина нагревается; причина нагрева — потери на джоулево тепло внутри диэлектрика, происходящие под влиянием переменного электромагнитного поля. На этот нагрев расходуется часть подводимой энергии, величина которой характеризуется тангенсом угла потерь.

Тангенс угла потерь зависит от направления поля в отношении волокон: вдоль волокон он примерно вдвое больше, чем поперек волокон. Поперек волокон в радиальном и тангенциальном направлении тангенс угла потерь мало различается. Тангенс угла диэлектрических потерь, как и диэлектрическая проницаемость, зависит от частоты тока и влажности древесины. Так, для абсолютно сухой древесины бука тангенс угла потерь вдоль волокон с увеличением частоты сначала увеличивается, достигает максимума при частоте 10 7 гц, после чего начинает снова снижаться. В то же время при влажности 12% тангенс угла потерь с увеличением частоты резко падает, достигает минимума при частоте 10 5 гц, затем так же резко увеличивается.

максимальная величина тангенса угла потерь для сухой древесины

С увеличением влажности древесины бука тангенс угла потерь вдоль волокон резко растет при малой (3 х 10 2 гц) и большой (10 9 гц) частоте и почти не меняется при частоте 10 6 -10 7 гц.

Путем сравнительного исследования диэлектрических свойств древесины сосны и полученных из нее целлюлозы, лигнина и смолы было установлено, что эти свойства определяются в основном целлюлозой. Нагрев древесины в поле токов высокой частоты находит применение в процессах сушки, пропитки и склеивания.

Куда звонить и кого вызывать?

В первую очередь необходимо уведомить аварийные службы, которые обеспечат оперативное выключение линии и выезд бригады к месту падения. Если у вас есть прямая связь с диспетчером, то вы можете сообщить об упавшем дереве ему. Ведь самое важное – это обесточить электроустановку.

В случае, когда дерево упало так, что нанесло ущерб вашему или чьему-то имуществу, необходимо вызвать и полицию. Сотрудники которой должны зафиксировать факт порчи имущества. Без такового вам будет достаточно сложно взыскивать возмещение с виновных.

Также вам может понадобиться помощь экспертного оценщика, особенно, если сумма потерь значительна. Поэтому, чтобы возместить нанесенный ущерб, вам понадобится не только определить, кто несет ответственность за то, что дерево или ветки упали на провода, но и провести квалифицированную экспертизу. Благодаря которой вы получите законные основания для выставления какой-либо суммы физическому лицу или компании, отвечающей за эти зеленые насаждения. Экспертиза является законным способом для определения реальных размеров ущерба.

пьезоэлектрические свойства древесины

На поверхности некоторых диэлектриков под действием механических напряжений появляются электрические заряды. Это явление, связанное с поляризацией диэлектрика, носит название прямого пьезоэлектрического эффекта. Пьезоэлектрические свойства были вначале обнаружены у кристаллов кварца, турмалина, сегнетовой соли и др. Эти материалы обладают также обратным пьезоэлектрическим эффектом, заключающимся в том, что размеры их изменяются под действием электрического поля. Пластинки из этих кристаллов находят широкое применение в качестве излучателей и приемников в ультразвуковой технике.

Эти явления обнаруживаются не только у монокристаллов, но и у целого ряда других анизотропных твердых материалов, названных пьезоэлектрическими текстурами. Пьезоэлектрические свойства были обнаружены также в древесине. Было установлено, что основной носитель пьезоэлектрических свойств в древесине — ее ориентированный компонент — целлюлоза. Интенсивность поляризации древесины пропорциональна величине механических напряжений от приложенных внешних усилий; коэффициент пропорциональности называется пьезоэлектрическим модулем. Количественное изучение пьезоэлектрического эффекта, таким образом, сводится к определению значений пьезоэлектрических модулей. В связи с анизотропией механических и пьезоэлектрических свойств древесины указанные показатели зависят от направления механических усилий и вектора поляризации.

Наибольший пьезоэлектрический эффект наблюдается при сжимающей и растягивающей нагрузках под углом 45° к волокнам. Механические напряжения, направленные строго вдоль или поперек волокон, не вызывают в древесине пьезоэлектрического эффекта. В табл. приведены значения пьезоэлектрических модулей для некоторых пород. Максимальный пьезоэлектрический эффект наблюдается в сухой древесине, с увеличением влажности он уменьшается, а затем и совсем исчезает. Так, уже при влажности 6-8% величина пьезоэлектрического эффекта очень мала. С повышением температуры до 100° С величина пьезоэлектрического модуля увеличивается. При малой упругой деформации (высоком модуле упругости) древесины пьезоэлектрический модуль уменьшается. Пьезоэлектрический модуль зависит также от ряда других факторов; однако наибольшее влияние на его величину оказывает ориентация целлюлозной составляющей древесины.

Классификация материалов по отношению к способности проводить электрический ток

При появлении в нашей жизни электричества, мало кто знал о его свойствах и параметрах, и в качестве проводников использовали различные материалы, было заметно, что при одной и той же величине напряжения источника тока на потребителе было разное значение напряжения. Было понятно, что на это влияет вид материала применяемого в качестве проводника. Когда ученные занялись вопросом по изучению этой проблемы они пришли к выводу, что в материале носителями заряда являются электроны. И способность проводить электрический ток обосабливается наличием свободных электронов в материале. Было выяснено, что у некоторых материалов этих электронов большое количество, а у других их вообще нет. Таким образом существуют материалы, которые хорошо проводят электрический ток, а некоторые не обладают такой способностью. Исходя из всего выше сказанного, все материалы поделились на три группы:

  • проводники;
  • полупроводники;
  • диэлектрики;

Каждая из групп нашла широкое применение в электротехнике.

Проводники

Проводниками являются материалы, которые хорошо проводят электрический ток, их применяют для изготовления проводов, кабельной продукции, контактных групп, обмоток, шин, токопроводящих жил и дорожек. Подавляющее большинство электрических устройств и аппаратов выполнена на основе проводниковых материалов. Мало того, скажу, что вся электроэнергетика не могла б существовать не будь этих веществ. В группу проводников входят все металлы, некоторые жидкости и газы.

Так же стоит упомянуть, что среди проводников есть супер проводники, сопротивление которых практически равно нулю, такие материалы очень редки и дороги. И проводники с высоким сопротивлением — вольфрам, молибден, нихром и т.д. Такие материалы используют для изготовления резисторов, нагревательных элементов и спиралей осветительных ламп.

Но львиная доля в электротехнической сфере принадлежит рядовым проводникам: медь, серебро, алюминий, сталь, различные сплавы этих металлов. Эти материалы нашли самое широкое и огромное применение в электротехнике, особенно это касается меди и алюминия, так как они сравнительно дешевы, и их применение в качестве проводников электрического тока наиболее целесообразно. Даже медь ограничена в своем использовании, её применяют в качестве обмоточных проводов, многожильных кабелях, и более ответственных устройствах, еще реже встречаются медные шинопроводы. А вот алюминий считается королем среди проводников электрического тока, пускай он обладает более высоким удельным сопротивлением чем медь, но это компенсируется его весьма низкой стоимостью и устойчивостью к коррозии. Он широко применяется в электроснабжении, в кабельной продукции, в воздушных линиях, шинопроводах, обычных проводах и т.д.

Полупроводники

Полупроводники, что-то среднее между проводниками и полупроводниками. Главной их особенностью является их зависимость проводить электрический ток от внешних условий. Ключевым условием является, наличие различных примесей в материале, которые как раз-таки обеспечивают возможность проводить электрический ток. Так же при определенной компоновку двух полупроводниковых материалов. На основе этих материалов на данный момент, произведено множество полупроводниковых устройств: диоды, светодиоды, транзисторы, семисторы, тиристоры, стабисторы, различные микросхемы. Существует целая наука, посвященная полупроводникам и устройствам на их основе: электронная техника. Все компьютеры, мобильные устройства. Да что там говорить, практически вся наша техника содержит в себе полупроводниковые элементы.

К полупроводниковым материалам относят: кремний, германий, графит, гр афен, индий и т.д.

Диэлектрики

Ну и последняя группа материалов, это диэлектрики, вещества не способные проводить электрический ток. К таким материалам относят: дерево, бумага, воздух, масло, керамика, стекло, пластмассы, полиэтилен, поливинилхлорид, резина и т.д. Диэлектрики получили широкое применение благодаря своим качествам. Их применяют в качестве изолирующего материала. Они предохраняют соприкосновение двух токоведущих частей, не допускают прямого прикосновения человека с этими частями. Роль диэлектриком в электротехнике не менее важна чем роль проводников, так как обеспечивают стабильную, безопасную работу всех электротехнических и электронных устройств. У всех диэлектриков существует предел, до которого они не способны проводить электрический ток, его называют пробивным напряжением. Это такой показатель, при котором диэлектрик начинает пропускать электрический ток, при этом происходит выделение тепла и разрушение самого диэлектрика. Это значение пробивного напряжения для каждого диэлектрического материала разное и приведено в справочных материалах. Чем он выше, тем лучше, надежней считается диэлектрик.

Параметром, характеризующим способность проводить электрический ток является удельное сопротивление R, единица измерения [Ом] и проводимость, величина обратная сопротивлению. Чем выше этот параметр, тем хуже материал проводит электрический ток. У проводников он равен от нескольких десятых, до сотен Ом. У диэлектриков сопротивление достигает десятков миллионов ом.

Все три вида материалов нашли широкое применение в электроэнергетике и электротехнике. А так же тесно взаимосвязаны друг с другом.

Источник



пьезоэлектрические модули древесины

Открытое явление позволяет глубже изучить тонкую структуру древесины. Показатели пьезоэлектрического эффекта могут служить количественными характеристиками ориентации целлюлозы и поэтому очень важны для изучения анизотропии натуральной древесины и новых древесных материалов с заданными в определенных направлениях свойствами.

Диэлектрик — это материал или вещество, которое практически не пропускает электрический ток. Такая проводимость получается вследствие небольшого количества электронов и ионов. Данные частицы образуются в не проводящем электрический ток материале только при достижении высоких температурных свойств. О том, что такое диэлектрик и пойдёт речь в этой статье.

Как образуется в материале проводимость

В современной физике сопротивление и проводимость принято объяснять зонной теорией. Она применима для твёрдых кристаллических тел, атомы решётки которого принимаются неподвижными. Согласно указанной концепции энергия электронов и прочих типов носителей заряда определяется установленными правилами. Выделяют три основные зоны, присущие материалу:

  • Валентная зона содержит электроны, связанные с атомами. В этой области энергия электронов градируется ступенями, а число уровней ограничено. Внешняя из слоёв атома.
  • Запрещённая зона. В этой области носители заряда находиться не вправе. Служит границей раздела двух других зон. У металлов часто отсутствует.
  • Свободная зона расположена выше двух предыдущих. Здесь электроны участвуют свободно в создании электрического тока, а энергия любая. Нет уровней.
  • Диэлектрики характеризуются высочайшим расположением свободной зоны. При любых мыслимых на Земле естественных условиях материалы электрический ток не проводят. Велика ширина и запрещённой зоны. У металлов масса свободных электронов. А валентная зона одновременно считается областью проводимости – запрещённых состояний нет. В результате подобные материалы обладают малым удельным сопротивлением.

    Виды токов

    В основе электропроводимости диэлектриков лежат:

    • Токи абсорбционные — ток, который протекает в диэлектрике при постоянном токе до тех пор, пока не достигнет состояния равновесия, изменяя направление при включении и подаче на него напряжения и при отключении. При переменном токе напряжённость в диэлектрике будет присутствовать в нём всё время, пока находится в действии электрического поля.
    • Электронная электропроводность — перемещение электронов под действием поля.
    • Ионная электропроводность — представляет собой движение ионов. Находится в растворах электролитов — соли, кислоты, щёлочь, а так же во многих диэлектриках.
    • Молионная электропроводность — движение заряженных частиц, называемых молионами. Находится в коллоидных системах, эмульсиях и суспензиях. Явление движения молионов в электрическом поле называется электрофорезом.

    Классифицируют по агрегатному состоянию и химической природе. Первые делятся на твёрдые, жидкостные, газообразные и затвердевающие. По химической природе делятся на органику, неорганику и элементоорганические материалы.

    По агрегатному состоянию:

    • Электропроводимость газов.
      У газообразных веществ достаточно малая проводимость тока. Он может возникать при наличии свободных заряженных частиц, что появляется из-за воздействия внешних и внутренних, электронных и ионных факторов: излучение рентгена и радиоактивного вида, соударение молекул и заряженных частиц, тепловые факторы.
    • Электропроводимость жидкого диэлектрика.
      Факторы зависимости: структура молекулы, температура, примеси, присутствие крупных зарядов электронов и ионов. Электропроводимость жидких диэлектриков во многом зависит от наличия влаги и примесей. Проводимость электричества полярных веществ создаётся ещё при помощи жидкости с диссоциированными ионами. При сравнении полярных и неполярных жидкостей, явное преимущество в проводимости имеют первые. Если очистить жидкость от примесей, то это поспособствует уменьшению её проводимых свойств. При росте проводимости и его температуры возникает уменьшение её вязкости, приводящее к увеличению подвижности ионов.
    • Твёрдые диэлектрики.
      Их электропроводимость обуславливается как перемещение заряженных частиц диэлектрика и примесей. В сильных полях электрического тока выявляется электропроводимость.

    Является ли дерево проводником для тока

    Дерево (древесина) — изолятор: его электрическая проводимость при комнатной температуре очень низкая, особенно если дерево сухое. При нагревании древесина обугливается. Древесный уголь (графит с частично разупорядоченной решеткой) — проводник электрического тока: далеко не самый лучший, но проводник. На описанном принципе и основан наш эксперимент. Берем лампочку на 220 В, последовательно с ней включаем два электрода (гвозди, стальная проволока и т.п.), которые расположены параллельно на расстоянии порядка 1-2 см. Включаем это все в розетку. Лампа, разумеется, не горит, поскольку цепь разомкнута: электроды разделены сантиметром воздуха. Поместим сверху на электроды несколько спичек. Спички соединят электроды, но дерево — изолятор, поэтому лампа гореть не будет. Направим на лампу пламя газовой горелки. Дерево загорится и обуглится, уголь соединит два электрода, а поскольку уголь — проводник, то цепь замкнется и лампа загорится. Газовая горелка зажжет лампу.
    На словах просто, однако, на практике все немного сложнее. Несколько нюансов.

    1. Дерево нужно обуглить полностью.

    Процесс обугливания дерева отличается, например, от разложения карбоната кальция (на оксид кальция и углекислый газ) тем, что термолиз дерева проходит множество стадий. Продукты промежуточных стадий нас не устраивают: карбонизация дерева должна быть полной. Признак этого: дерево прекращает гореть — пламя исчезает, дерево только тлеет (т.е. летучие горючие продукты термолиза больше не образуются).

    2. В процессе нагрева спички могут изгибаться в пламени, в результате теряется контакт с электродами. Иногда помогает дальнейший нагрев: спички изгибаются до тех пор, пока снова не коснутся электрода. (Возможно, для улучшения контакта имеет значение и сам процесс нагрева). Нужно не перестараться и не сжечь уголь полностью.

    В процессе обугливания спички нередко падают, поэтому перед опытом их нужно класть на электроды так, чтобы ни один конец не перевешивал другой (полезны петельки на электродах — см. ниже).

    3. В некоторых случаях обугленную спичку можно поправить и прижать к электродам обычной спичкой — чтобы восстановить контакт. Электроды желательно делать с «петельками» на концах, и именно в петельки вставлять спички: это улучшает контакт.

    4. В процессе опыта электроды покрываются окалиной и копотью. Между опытами желательно их счистить для улучшения контакта (по-видимому, это не обязательно).

    5. В процессе опыта оголенные электроды находятся под напряжением 220 В. Экспериментатору много раз приходится проводить манипуляции с этими электродами: помещать на них спички, поправлять обугленные спички, демонстрировать мультиметром, что электроды под напряжением и т.д. Далеко не каждый опыт получается хорошо, поэтому рутинные процедуры нужно делать снова и снова. В результате легко забыть, что электроды под напряжением и случайно коснуться их.

    В процессе опытов я коснулся электродов под напряжением дважды. Один раз — потными руками, стоя босыми ногами на линолеуме. Ладонь дернуло, я выронил плоскогубцы и проронил пару «культурных» слов. Второй раз вообще ничего не почувствовал. — Отделался легко.

    Но если человек одновременно прикоснется к оголенным проводам и к заземленным предметам (труба водопровода, батарея центрального отопления и т.п.), результат может оказаться фатальным. Особенно плохо, если руки мокрые, т.к. электрическое сопротивление человеческого тела сосредоточено в основном в коже.

    Итак, в цепи находится лампа на 220 В, последовательно с ней включены два электрода. Роль электродов в разных опытах играли гвозди, большие канцелярские скрепки и стальная проволока. Электроды расположены параллельно и на одном уровне (чтобы на них можно было сверху положить спички или кусочки дерева). Для доказательства, что цепь под напряжением соединяю электроды отверткой. Лампа ярко загорается. Убираю отвертку — лампа гаснет.

    Помещаю на электроды несколько спичек, чтобы они их соединяли. Лампа не горит, поскольку дерево — изолятор. Направляю на спички пламя горелки, равномерно обугливаю их по всей длине. Когда от спичек остаются красные угольки, цепь замыкается, лампа загорается. В месте контакта спички с электродами часто вспыхивают синеватая электрическая дуга, сама спичка местами остается раскаленной докрасна. Это сопровождается характерным потрескиванием. Через несколько секунд или десятков секунд спичка сгорает, контакт теряется, лампа гаснет. Но часто контакт восстанавливается в новых местах, снова вспыхивает дуга, появляются искры и потрескивание. Лампа опять загорается: иногда ярко и почти равномерно, иногда тускло и с миганиями (в зависимости от того, насколько хороший контакт). При необходимости обугленные спички поправляют и прижимают к электродам с помощью несгоревшей спички. Если это не дает эффекта — направляют на обугленные спички пламя горелки.

    Физические свойства диэлектриков

    При удельном сопротивлении материала равном меньше 10-5 Ом*м их можно отнести к проводникам. Если больше 108 Ом*м — к диэлектрикам. Возможны случаи, когда удельное сопротивление будет в разы больше сопротивления проводника. В интервале 10-5-108 Ом*м находится полупроводник. Металлический материал — отличный проводник электрического тока.

    Из всей таблицы Менделеева только 25 элементов относятся к неметаллам, причём 12 из них, возможно, будут со свойствами полупроводника. Но, разумеется, кроме веществ таблицы, существует ещё множество сплавов, композиций или химических соединений со свойством проводника, полупроводника или диэлектрика. Исходя из этого, трудно провести определённую грань значений различных веществ с их сопротивлениями. Для примера, при пониженном температурном факторе полупроводник станет вести себя подобно диэлектрику.

    Материалы для ограждающих конструкций стен

    Выбирая материал для стен, будущий владелец жилья руководствуется своими собственными мотивами, которые не всегда объективны. Иногда все упирается в цену, в других случаях думают, к примеру, об экологичности постройки. Ведь многие утверждают, что в деревянном доме «легче дышится».

    Если вы после долгих раздумий все же выбрали дерево для строительства дома, непременно позаботьтесь о пожаробезопасности. В этом вам помогут специальные пропитки — антипирены, но время, на которое они способны сдержать распространение огня, невелико — около 60 минут.

    Что такое диэлектрик жидкий?

    Поляризация данного вида происходит в поле электрического тока. Жидкостные токонепроводящие вещества используются в технике для заливки или пропитки материалов. Есть 3 класса жидких диэлектриков:

    Нефтяные масла — являются слабовязкими и в основном неполярными. Их часто используют в высоковольтных аппаратурах: высоковольтные воды. — это неполярный диэлектрик. Кабельное масло нашло применение в пропитке изоляционно-бумажных проводов с напряжением на них до 40 кВ, а также покрытий на основе металла с током больше 120 кВ. Масло трансформаторное по сравнению с конденсаторным имеет более чистую структуру. Данный вид диэлектрика получил широкое распространение в производстве, несмотря на большую себестоимость по сравнению с аналоговыми веществами и материалами.

    Что такое диэлектрик синтетический? В настоящее время практически везде он запрещён из-за высокой токсичности, так как производится на основе хлорированного углерода. А жидкий диэлектрик, в основе которого кремний органический, является безопасным и экологически чистым. Данный вид не вызывает металлической ржавчины и имеет свойства малой гигроскопичности. Существует разжиженный диэлектрик, содержащий фторорганическое соединение, которое особо популярно из-за своей негорючести, термических свойств и окислительной стабильности.

    И последний вид, это растительные масла. Они являются слабо полярными диэлектриками, к ним относятся льняное, касторовое, тунговое, конопляное. Касторовое масло является сильно нагреваемым и применяется в бумажных конденсаторах. Остальные масла — испаряемые. Выпаривание в них обуславливается не естественным испарением, а химической реакцией под названием полимеризация. Активно применяется в эмалях и красках.

    Электрические провода и деревья на дачном участке


    Летом во время неожиданно начавшегося дождя мы нередко спешим под раскидистые кроны деревьев, забывая, что там могут быть «спрятаны» электрические провода.

    В СЕЛЬСКОЙ местности для подвода электричества к домам обычно используют воздушные линии с неизолированными (оголенными) проводами. Поэтому если поблизости от вашего дома есть деревья, «проросшие» в линии электропередачи, вы должны понимать, чем это грозит.

    Прежде всего, ветки и стволы дерева, касающиеся оголенного провода, в дождь или во время сильного тумана с росой превращаются в проводник, по которому утекает в землю ток. И если таких деревьев много, то и потерю электроэнергии они вызывают ощутимую. С этим особенно знакомы те садоводы, в товариществе которых стоят счетчики не только в каждом доме, но и общий счетчик. Обычно его показания и отражают такие утечки.

    Кроме того, при сильном ветре дерево раскачивается и может порвать провода. Если провод под напряжением оборвется и упадет на землю, ни подходить к нему, ни тем более брать его в руки нельзя: земля находится под напряжением в радиусе 8 м. Чтобы не пострадать от шагового напряжения, надо отпрыгнуть от опасного места, отталкиваясь двумя ногами, или уходить мелкими шажками, но ни в коем случае не широкими.

    При недостаточном натяжении проводов ветки дерева или высокого кустарника могут вызвать контакт одного оголенного провода с другим, и тогда произойдет короткое замыкание. И тут уж придется вызывать электрика.

    В засуху при резком касании ветки к голому проводу образуются искры, а от них и до пожара недалеко.


    Угрозу представляют и высокие деревья, которые растут вблизи линий электропередачи: при урагане они могут упасть и при этом зацепить провода. Нередки случаи, когда сломанные деревья падают на дом и даже затягивают через окно внутрь строения оборванные, но находящиеся под напряжением провода.

    Словом, все это создает угрозу не только имуществу, но и жизни людей. СОГЛАСНО правилам устройства электроустановок (ПУЭ), вдоль воздушных линий электропередачи должны быть установлены охранные зоны в виде земельного участка и воздушного пространства. В зависимости от напряжения ЛЭП ограничивающие охранную зону вертикальные плоскости могут отстоять по обе стороны от крайних проводов на расстоянии от 2 до 55 м. Например, для высоковольтной линии с напряжением до 20 кВ это расстояние составит 10 м, а для линий с напряжением 1150 кВ — 55 м. Обычно вдоль деревенской улицы или дороги в садоводческом товариществе тянут низковольтную ЛЭП (0,4 кВ). Неизолированные провода располагают на столбах на высоте 6 м от поверхности земли.

    От воздушных линий до кроны деревьев и прочей растительности должно быть не менее 3 м. Причем это расстояние надо понимать так: от крайнего провода до кромки кроны, а не до ствола дерева. И конечно, при расчете расстояния учитывают возможное отклонение проводов при сильных порывах ветра.

    Проводить воздушные линии непосредственно над участком в садоводческом товариществе категорически запрещено. Но вот сделать индивидуальную подводку от своего дома к бане (даже в противоположный конец участка) можно. Думаю, владельцам участков в садоводческих товариществах будет полезно знать и такие правила.


    Не каждое дерево можно вырубить по своему усмотрению, без согласования со специальными службами. Деревья и кустарники, находившиеся на садовом участке в момент организации садоводческого товарищества и не вырубленные в период его обустройства, охраняются законом.

    Распоряжаться по своему усмотрению можно деревьями и кустарниками, которые появились на земельном участке после передачи этого участка в собственность. Если участок оформлен в аренду или пожизненное владение, распоряжаться древесной растительностью на участке по своему усмотрению, без порубочного билета, тоже нельзя. Если дерево растет под проводом и представляет опасность, срубить его можно, только оформив билет на вырубку.

    УЧТИТЕ ЭТО

    По существующим нормам, земельные участки, входящие в охранные зоны высоковольтных ЛЭП, у землепользователей не изымаются. Но без письменного согласия предприятий, в ведении которых находятся эти сети, нельзя на таких землях вести: строительство, капитальный ремонт, реконструкцию или снос любых зданий и сооружений; посадку, вырубку деревьев и кустарников; устройство загонов для скота; сооружение проволочных ограждений, шпалеры для виноградников, а также проводить полив с помощью мощных водяных систем и устройств. В случае, если хозяин участка посадит деревья в зоне охраны ЛЭП, то его заставят вырубить их за собственный счет.

    В.Астахин, инженер-электрик

    Рейтинг
    ( 1 оценка, среднее 5 из 5 )
    Понравилась статья? Поделиться с друзьями: