Методы повышения качества поверхностного слоя деталей

  • Алитирование в порошках.
    Чаще всего здесь используют порошкообразные смеси следующих составов:
    1. 49,5 % алюминия + 49,5 % Al2O3 + 1 % NH4Cl;
    2. 99 % ферроалюминия + 1 % NH4Cl;

  • 48 % ферроалюминия + 48 % кварцевого песка + 4 % NH4Cl.
  • Во всех составах температуру алитирования поддерживают на уровне 950…1050 °С, а время выдержки для указанных температур назначают в пределах от 6 до 12 ч. При таких режимах глубина алитированного слоя может составлять 0,25…0,6 мм.

    Сам процесс алитирования проводят следующим образом. Детали и порошки послойно загружают в железные или нихромовые ящики. В процессе насыщения в них многократно добавляют 10-15 % свежей порошкообразной смеси. Если в состав смеси входит окись алюминия, то ее предварительно перед загрузкой в ящик прокаливают при температуре 800-900 °С. Все компоненты порошкообразных смесей просеивают через сито с размером ячейки 0,4-0,5 мм. Ящик, в котором проводят алитирование, обязательно должен быть снабжен плавким затвором. Вместе с деталями в ящик кладут по два-три контрольных образца, называемых свидетелями. С помощью таких свидетелей можно следить за ходом насыщения.

    На рисунке 1 показана зависимость глубины алитированного слоя у стали 10 от продолжительности насыщения при различных температурах. Алитирование в расплавленном алюминии.

    Сущность этого способа заключается в выдержке деталей в ванне с расплавленным алюминием при температурах 720 -850 °С. Поскольку в жидком алюминии некоторые детали могут растворяться, то для предотвращения такого процесса в ванну вводят 8-12 % железа. В составе ванны нежелательно иметь примеси меди, цинка и кремния, т.к. они затрудняют процесс насыщения.

    Время выдержки может меняться в зависимости от вида деталей и их назначения от 15мин. до 1ч. При таких режимах можно получать алитированные слои глубиной 0,1…0,3 мм. Следует заметить, что при таком способе иногда может отмечаться повышение хрупкости, получаемого слоя. Поэтому, в целях устранения такого дефекта, детали после алитирования подвергают отжигу при температуре 950-1050 °С в течение 4-5 часов. При такой термообработке глубина слоя может увеличиться на 20-40 %.

    В процессе алитирования на поверхности расплава рекомендуют создавать слой флюса, состоящего, например, из 40 % NaCl; 40 % KCl; 10 % Na3AlF6; 10 % AlF3. Такой флюс играет роль защиты и уменьшает процесс разъедания поверхности детали. На рисунке 2

    показана зависимость глубины слоя у стали 10 от продолжительности алитирования в расплаве алюминия при различных температурах.

    Алитированный слой представляет собой твердый раствор алюминия на базе химического соединения Fe3Al. Такую фазу чаще называют ?-фазой. Концентрация алюминия в этой фазе может доходить до 30 % и более.

    В настоящее время постепенно развивается и расширяется алитирование способом металлизации. Сущность этого способа заключается в напылении на поверхность детали слоя алюминия с последующим диффузионным отжигом при температуре 900-1000 °С. Перед отжигом деталь покрывают обмазкой, состоящей из 48 % серебристого графита, 30 % кварцевого песка, 20 % глины и 2 % хлористого аммония. Все компоненты замешиваются на жидком стекле и наносится на деталь толщиной 0,8-1,5 мм.

    Температура, при которой происходит насыщение, составляет 900-950 °С. Сам процесс может длиться 2-4 часа. При таких режимах можно получать слой толщиной 0,2-0,4 мм. Наибольшее применение алитирование получило при производстве клапанов двигателей внутреннего сгорания, чехлов термопар и т.п. В принципе, алитирование можно назначать для любых деталей, работающих при высокой температуре, и которым, прежде всего, предъяляют требования высокой окалиностойкости.

    Алитирование стали

    На протяжении нескольких столетий основные эксплуатационные качества металлов изменялись при помощи химико-термического воздействия. Проведенные тесты указывают на то, что процент содержания определенных примесей в металле может оказывать влияние на его твердость, прочность, коррозионную стойкость и многие другие качества. Алитирование углеродистой стали – процесс насыщения поверхностного слоя изделия алюминием, который проходит при определенной температуре. Процесс алитирования стали достаточно сложен, при его проведении проводится установка определенного оборудования. Рассмотрим особенности проведения работы по насыщению поверхностного слоя стали и чугуна алюминием.

    Процесс алитирования стали

    Алитирование – это разновидность диффузионной металлизации, которая характеризуется насыщением поверхностного слоя алюминием. Защитное покрытие создает на обрабатываемых изделиях оксидную пленку, повышающую устойчивость к высокотемпературному воздействию и предупреждающую коррозионные процессы. Несмотря на то что данный способ обработки подходит для большинства металлов и сплавов, наиболее популярным является алюминирование стали. Второе место занимает чугун.

    Алитирование отличается высокой технологической сложностью – его практически невозможно реализовать в домашних условиях. Рассмотрим особенности и нюансы технологии.

    Способы алитирования

    Алитирование стали выполняют при температуре от 700 до 1100 °C в зависимости от характеристик заготовки. Известно несколько методов алюминирования поверхности:

    • в порошкообразных смесях (калоризация);
    • напылением;
    • металлизация;
    • в вакууме;
    • погружением.

    Каждый способ имеет преимущества и недостатки. Технические характеристики слоя также будут иметь разные параметры.

    Алитирование стали методом погружения является наиболее предпочтительным.

    Свойства и преимущества алитированных сталей

    Алитированная сталь обладает рядом ценных качеств:

    1. После хроматирования получается поверхность с высокой адгезией к лакокрасочным изделиям.
    2. Низкая себестоимость покрытия позволяет использовать алитирование в качестве достойной альтернативы дорогостоящим жаростойким покрытиям.
    3. Алюминизированная сталь обладает устойчивостью к механическим повреждениям.
    4. При температуре свыше 470 °C образуется промежуточный сплав, который имеет высокую устойчивость к температурным воздействиям.

    Лабораторные испытания показали, что при равной толщине слой алюминия в 2,5 раза крепче, чем цинковый.

    Алитирование – это высокотехнологичный процесс, который придает поверхности обрабатываемого металла новые защитные свойства. А что вы думаете о технологии? Возможно, считаете, что есть более качественные методы металлизации? Поделитесь вашими мыслями в блоке комментариев.

    Назначение процесса

    Нормализация призвана менять микроструктуру стали, она выполняет следующее:

    • снижает внутренние напряжения;
    • посредством перекристаллизации измельчает крупнозернистую структуру сварных швов, отливок или поковок.

    Цели нормализации могут быть совершенно разные. С помощью такого процесса твердость стали можно повысить или снизить, это же касается прочности материала и его ударной вязкости. Все зависит от механических и термических характеристик стали. С помощью данной технологии можно как сократить остаточные напряжения, так и улучшить степень обрабатываемости стали с помощью того или иного метода.

    Стальные отливки такой обработке подвергают в следующих целях:

    • для гомогенизации их структуры;
    • чтобы увеличить подверженность термическому упрочнению;
    • чтобы снизить остаточные напряжения.

    Изделия, полученные посредством обработки давлением, подвергают нормализации после ковки и прокатки, чтобы сократить разнозернистость структуры и ее полосчатость.

    Нормализация вместе с отпуском нужна для замены закалки изделий сложной формы или же с резкими перепадами по сечению. Она позволит не допустить дефектов.

    Еще эта технология применяется, чтобы улучшить структуру изделия перед закалкой, повысить его обрабатываемость посредством резки, устранить в заэвтектоидной стали сетку вторичного цемента, а также подготовить сталь к завершающей термической обработке.

    Технология процесса

    Подготовка, насыщение азотом и финишная обработка верхнего слоя стали и сплавов подразумевает несколько ступеней:

    1. Подготовительная термообработка металла, которая состоит из закалки и высокого отпуска. Внутренность изделия при этом становиться более вязкая и прочная. Закалка проходит при очень высокой температуре около 940 °С и заканчивается охлаждением в жидкости – масле или воде. Температурные условия отпуска составляют 600-700 °С , что наделяет металл твердостью годной для резки;
    2. Механическая обработка заготовок, которая заканчивается шлифовкой. После этой процедуры деталь достигает нужных размеров;
    3. Предохранительные меры для тех частей изделий, которые должны попасть под действие насыщения азотом. Для этого применяют простые составы вроде олова или жидкого стекла, наносимые слоем не более 0,015 мм путем электролиза. Происходит образованием тонкой пленки, непроницаемой для азота;
    4. Азотирование стали по вышеописанной технологии;
    5. Финишное доведение деталей до требуемого состояния.

    При этом сложноформенные заготовки с тонкими стенками упрочняют при 520 °С.

    По поводу изменения геометрических параметров изделий после процесса азотирования отмечено, что она зависит от толщины полученного азотонасыщенного слоя и примененных температур. Однако, данное изменение в любом случае незначительно.

    Нужно отметить, что современные методы обработки металла способом азотирования проводят в печах шахтного строения. Максимальная температура которых может достигать 700 его проведения ˚С, циркуляция аммиака в таких печах принудительная. Муфель может быть встроенным в печь либо сменным.

    Процесс будет проходить намного быстрее, если внедрить дополнительный муфель. Тогда запасной муфель с деталями загружается сразу же по готовности первого с обработанными заготовками. Однако, применение такого способа не всегда экономически оправдано, особенно при насыщении азотом крупных изделий.

    Назначение

    Нормализация стали имеет разные функции кроме усиления ее твердости. В некоторых случаях нормализацию проводят с обратной целью для понижения прочности и ударной вязкости.

    К основным целям нормализации металла относятся:

    • Получение результата нивелирования напряжений. После проработки у стали появляются дополнительные параметры, что позволяет легче обрабатывать ее разными способами.
    • Уменьшение разнозернистости и полосчатости структуры. В этом случае нормализации подвергаются предметы после ковки или проведения прокатки с использованием метода давления.
    • Снижение риска деформации деталей, имеющих перепады по сечению резкого характера или конфигурацию сложной формы.
    • Изменение крупнозернистой структуры стали на мелкозернистую. Нормализация помогает удалить в заэвтектоидной стали сетку вторичного цемента, улучшает ее способность к обработке и закалке.

    Методы повышения качества поверхностного слоя деталей

    Методы повышения качества поверхностного слоя деталей

    Для улучшения качества поверхности используют различные способы упрочнения. Эти способы позволяют улучшить качество деталей. К подобным методам относят отделочную обработку. Главная цель методов – воспроизвести необходимые требования к деталям и повысить срок их службы.

    Поверхность можно охарактеризовать физическими, механическими свойствами и микрогеометрией.

    Неоспоримый факт, что качество свойств поверхностей различных деталей (например, валов) непосредственно влияет на рабочие характеристики машин. С помощью определенного вида обработки поверхности деталей машин подгоняют под заданные физико-механические характеристики. Детали становятся более прочными, устойчивыми, твердыми. Увеличивается их срок службы и качество эксплуатации. Требования к качеству машин должны соблюдаться в полной мере. Эту задачу помогают решить некоторые методы. Рассмотрим более подробно их классификацию:

    — тепловая обработка поверхности (например, обычная закалка или ТВЧ –токами высокой частоты);

    — химические и тепловые способы (цементация, азотирование, планирование);

    — диффузионная металлизация (диффузионное алитирование, хромирование, силицирование и др.);

    — использование твердых сплавов и металлов (покрытие литыми и порошкообразными сплавами);

    — нанесение металла;

    — искажение формы.

    Закаливание —

    По поверхности деталей проходятся электрическим током. Также данный метод осуществляют с использованием газового пламени. Тогда внутренняя часть детали после снижения температуры получается незакаленная. Метод закаливания делает поверхность более твердой и устойчивой к внешним воздействиям среды. А центральная часть остается прочной и вязкой. Использование лазерного луча также целесообразно при закаливании поверхностей.

    Цементация

    Главная цель метода – наполнить поверхность углеродом. Используется данный метод с 19 века. По технологии напоминает азотирование. Сталь помещают в любой вид карбюризатора (твердый, газообразный, жидкий). После чего нагревают. Затем происходит снижение температуры. По окончанию цементации рекомендуется произвести закаливание, которое оставит пластичной центральную часть. Цементация увеличивает стойкость изделий к различного рода нагрузкам, прочность и твердость. Температура при цементации должна быть не меньше 800 градусов. Некоторые способы цементации используют в домашних условиях.

    Азотирование

    Метод наполняет поверхность изделий азотом. Для этого используют газообразный аммиак. Детали нагревают при температуре от 450 градусов. После чего изделие остывает. Азотирование увеличивает прочность и срок службы, сводит до минимума появление ржавчины.

    Цианирование

    В этом методе совмещается углерод и азот. Наполнение поверхности увеличивает прочность, срок службы и твердость. Температурный режим данного метода от 530 градусов. Используется для разных металлов. Результат зависит от вида материала, температуры и концентрации газов.

    Диффузная металлизация

    С помощью этого метода происходит насыщение поверхности разными видами металлов. Для начала поверхность изделия очень сильно нагревают. В этот момент изделие контактирует с другим металлом. Изделие с внешних сторон наполняется алюминием, хромом, кремнием. Происходит алитирование, хромирование изделия, силицирование изделия. Используются различные металлы. Поверхность детали выдерживают при повышенной температуре необходимое время, после чего температуру снижают. Температурный режим при диффузной металлизации должна быть не меньше 900 градусов. В итоге повышается стойкость к образованию ржавчины, слои укрепляются, температурные границы увеличиваются.

    Покрытие поверхностей —

    Для этого метода используют различные прочные сплавы и металлы. Можно применить напыление. Метод покрытия увеличивает срок службы изделия. Присадочным материалом обычно является порошок. Он применяется для повышения свойств и улучшения характеристик. В таком случае используется плазменное напыление, которое осуществляется с помощью лазера.

    Поверхностно-пластическое деформирование (ППД)

    Считается самым легким и продуктивным. Он увеличивает работоспособность и безопасность машин. С использованием данного метод увеличивается прочность и срок службы изделий. Деталь становится максимально твердой. А все существующие неровности на минимизируются. ППД уменьшает шероховатость Rа. В радиусе увеличиваются закругленные вершины. Длина опоры профиля также возрастает.

    Упрочнение позволяет задать определенные свойства и требования к изделию и его поверхности.

    Такой способ деформирования подразделяют на: обработку дробью, гидровиброударную обработку; электромагнитное, ультразвуковое упрочнение и др. Он позволяет создавать различную структуру материала и придавать особые свойства. Деформированию могут подвергаться изделия с различными формами и объемами.

    Метод отделочной обработки

    Это доводка, притирка, супершлифование, полировка. При применении данного метода возможны небольшие отклонения в объемах, размере и форме изделия. Но эти отклонения никак не сказываются на качестве изделия и на успешности эксплуатации. Особое внимание уделяется шероховатости изделия.

    Абразивная доводка

    Конечный способ улучшения качества деталей. Активно используется в промышленности. Для ее осуществления применяются специальные пасты, станки, ручные притиры. Возможны небольшие изменения в размере, форме поверхности деталей Rа = 0,16…0,01 мкм. Данный способ соединяет в себе механические, химические и физико — химические процессы. Данный способ используется довольно часто. В некоторых случаях абразивная доводка — единственно-возможный метод улучшения качества поверхности изделия.

    Суперфиниш

    С помощью шлифовальных и цилиндрических брусков производится шлифовка изделия. Использование данного метода позволяет снизить шероховатость до Rа = 0,1…0,012 мкм., Опорная площадь поверхности используется практически полностью (90%). При этом изменения объемов и форм поверхностей изделия не происходит. Для шлифовки используют мелкозернистые бруски. Их смазывают керосином вперемешку с турбинным маслом. Скорость обработки примерно до 2,5 м/с). Воздействие на деталь сводится к минимуму. Для суперфиниша применяется простое оборудование и универсальные станки. У этого метода очень высокая производительность и отличное качество поверхности изделий. Эксплуатационные свойства изделия увеличиваются с применением данного метода. Единственное, не всегда получается устранить погрешности предыдущих обработок.

    Полировка —

    Используется для того, чтобы уменьшить неровности поверхности и при этом не изменить габариты и внешний вид детали. С помощью полировки появляется возможность убрать минимальный и тонкий слой с изделия. Данный метод также является заключительным этапом в обработке. Задача полировки достичь шероховатость равную– Ra = 0,1…0,012 мкм. Для этого метода используются шлифовочные инструменты – ткань, войлок и т.д. На инструменты наносят специальные пасты. Ручная полировка делает изделие ровным и идеальным. Во время шлифовки изделий в барабанах и виброконтейнерах применяют абразивные шкурки, а также свободные абразивы. При полировке часто применяю электрокорунд и карбиды кремния. Также бор, окись хрома, железа, алюминия, пасты ГОИ, алмазные и эльборовые шкурки — все это полирует поверхность изделий.

    16.08.2019

    7 2878

    Назад к списку Следующая новость

    Сульфоцианирование

    Данная обработка в большей степени напоминает процесс цианирования. Поверхность насыщается не только углеродом и азотом, но также и серой. Сульфоцианированные детали в большей степени обладают такими же характеристиками как и цианированные. Лучше всего сульфоцианированные детали показали себя в механизмах на средних нагрузках. Благодаря немного другой схеме цианирования предупреждается схватывание и наволакивание металла.

    Нормальная температура плавления смеси составляет 560-580 градусов. Обработку стальных сплавов проводят преимущественно в жидких средах, но также возможно и в газовых. Так как сульфоцианированные детали обладают чуть большей прочностью, то их использование оправданно в качестве поршневых колец, чугунных втулок, разнообразных запчастей насоса.

    Виды термической обработки металла

    Существует 3 основных вида термической обработки металла:

    • отжиг;
    • закалка;
    • отпуск.

    Также имеется еще и термохимическая обработка, которая относится к комбинированным методам придания материалу свойств повышенной твердости и износостойкости.

    Отжиг

    Суть отжига — металл нагревают до определенной температуры, держат необходимый промежуток времени, после чего медленно охлаждают до обычной комнатной температуры.

    Чаще всего отжиг производится для решения следующих задач:

    • увеличение механических показателей материала;
    • приведения материала к однородному состоянию;
    • улучшение пластичности;
    • повышение уровня сопротивляемости;
    • уменьшение внутреннего сопротивления материала для последующей ковки.

    Отжиг — процесс, разделяющийся на несколько видов, в зависимости от нюансов проведения процедуры:

    • диффузионный;
    • полный или неполный;
    • сфероидизация;
    • изотермический;
    • нормализация.

    Методов отжига больше, но это основные и наиболее часто используемые.

    Также процедура полного отжига подразумевает улучшения свойств материала для обработки и избавления от внутреннего сопротивления. Полный отжиг применяется для обработки:

    • стали с минимальным количеством карбона;
    • доэвтектоидного сплава.

    При полном варианте процесса изделие доводят критической температуры ( точка А3) и после необходимого периода времени охлаждают до комнатных показателей. Так как конкретные параметры температуры зависят от вида используемых материалов. В следствии чего, время передержки также напрямую зависит от вида сплава, подвергающегося данному технологическому процессу.

    При неполном отжиге конечная цель иная — по возможности создать более мягкий и пластичный материал. В этом случаи температура нагрева может достигать 770 градусов. Охлаждение делится на 2 этапа: сначала в печи, а затем уже на открытом воздухе.

    Изотермическая разновидность отжига используется для высокохромистых сталей. При этом методе значительно экономится время производства, поскольку в одном из этапов охлаждения используется ускоренный процесс. Нет нужды ждать пока сталь остынет вместе с печью.

    Закалка металла

    При закалке происходит нагрев изделия до критических показателей. В следствии чего последующее охлаждение производится не постепенно и естественно, а резко и принудительно. При этом для снижения температуры применяются такие вещества как: сжатый воздух, водяной туман, а также жидкая полимерная закалочная среда. помимо прочности металл получает меньшие параметры вязкости и эластичности.

    Способы закалки:

    1. Использование одной среды — простой метод, который, однако, имеет ограничения по материалу использования. Происходит быстрое охлаждение и возникает неравномерность температур. Нельзя так обрабатывать металл с большим содержанием углерода, поскольку такой материал может разрушиться от агрессивного воздействия.
    2. Многоступенчатая закалка — сначала металл термически обрабатывают, а после достижения необходимой температуры его укладывают в соляную ванну. Температура уравнивается и только потом материал охлаждают с использованием масла, воздуха или тумана.
    3. Светлая закалка. При таком методе, сначала материал выдерживают в соляной ванне с добавлением хлористого натрия. Потом его же охлаждают в ванне с едким натрием и едким калием.
    4. Самоотпуск. При таком способе деталь вытаскивается из системы охлаждения еще до того момента, как температура упадет. В центре заготовки или детали в это время еще сохранится высокий показатель температуры. После того, как закончен отпуск детали, ее охлаждают полностью с помощью погружения в специальную среду.
    5. Изотермическое закаливание. Аналог ступенчатой закалки с более долгим временем передержки в соляной ванне.

    Алитируемые металлы и сплавы

    Алитирование – это не только способ защиты поверхности. Оксидная пленка является прекрасной основой под лакокрасочные покрытия. Основными металлами, которые подвергают алитированию, являются:

    1. Углеродистая сталь. При высоком содержании углерода в металле диффузия алюминия затруднена, поэтому обрабатывают преимущественно низко- и среднеуглеродистые стали.
    2. Легированная сталь. Обработка данного металла сопряжена с определенными трудностями, однако при соблюдении всех технологических требований можно получить износостойкий защитный слой.
    3. Чугун. Обработку чугуна выполняют реже. Целью является изменение физических свойств поверхностного слоя чугуна.

    Процесс изготовления нержавеющей стали заключается в алитировании легированных или углеродистых составов.

    Помимо вышеперечисленных металлов защитный слой наносят на следующие материалы:

    Близкие по сути процессы термообработки

    В перечень термообработки сталей, помимо нормализации, можно внести операции:

    • отжиг;
    • отпуск;
    • закаливание;
    • криогенная обработка и несколько других.

    Операция отжига обеспечивает качественную, более тонкую структуру перлита, это происходит потому, что охлаждения деталей применяют печи. Назначение этой операции — понижение неоднородности структуры, удаления напряжений, повышение обрабатываемости.

    Основы, заложенные в операцию закаливания, идентичны принципам нормализации, но существуют некоторые различия. Например, при закаливании применяют температуры куда как выше и высокие скорости охлаждения. Закаливание проводит к улучшению прочностных характеристик, твердости и пр. Но, нередко заготовки прошедшие через закаливание отличает сниженная вязкость и высокая хрупкость.

    Отпуск деталей применяют после операции закаливания. Отпуск снижает хрупкость и внутренние напряжения. При этом диапазон температур ниже, чем тот, который используют в нормализации. Охлаждение деталей проводят на воздухе. При повышении температуры снижается предел прочности, твердость и в то же время растет ударная вязкость.

    Технология цементации стали, ее сущность и назначение — методики и видео

    В зависимости от специфики применения различных металлов и сплавов нередко производится их дополнительная обработка. Это позволяет выделить (усилить) те или иные свойства образца. Что представляет собой цементации стали, зачем она нужна, в каких случаях целесообразно ее проводить – об этом читатель в доступной форме узнает из предлагаемой статьи.

    Существуют различные методики химико-термического воздействия на материалы. Одна из них – цементация. Применяется данная технология для сталей малоуглеродистых и легированных, содержание элемента «С» в которых не превышает 0,25%.

    Назначение – повышение таких характеристик сплава, как износостойкость, прочность, твердость.

    Для реализации чаще всего используются специальные печи, где процесс протекает при высокой температуре – порядка 945 (±15) ºС.

    В зависимости от габаритов и конструкционных особенностей изделия оно выдерживается в таких условиях в течение нескольких часов. По сути, это комплексная обработка детали (химическая + термическая) с целью придания ей твердости.

    Пастами

    Технология самая простая, но не всегда применимая. Для деталей, имеющих сложную конфигурацию, с различными выступами, пазами и тому подобное, она явно не подходит.

    Методика – поверхностное нанесение цементирующей пасты на образец. Ее слой выбирается большим по сравнению с расчетной глубиной проникновения углерода в сталь (примерно в 7 раз).

    Условия – температурный режим выставляется в зависимости от вида пасты, в пределах от 900 до 1 000 ºС.

    Такую цементацию стали можно провести и в домашних условиях, при наличии сушильного шкафа с требуемыми параметрами.

    Газовой средой

    Одна из самых эффективных методик, которая широко применяется в промышленности. Она существенно упрощает процесс цементации, сокращает время обработки стали и повышает производительность. Главное условие – правильно подобрать смесь по долевому содержанию углерода и оптимальный температурный режим.

    Методика – продукция загружается с цементационную печь, в которую подается газ.

    Кипящим слоем

    Такой способ лишь отчасти напоминает предыдущий.

    Методика – в печи, на решетке газораспределительной, помещается так называемый корунд. Эндогаз (смесь, в которую вводится метан) подается снизу и, поднимаясь, его разжижает, вследствие чего мельчайшие фракции начинают перемещаться вместе с потоком к обрабатываемому изделию. При высокой температуре происходит диффузия частичек корунда, и как результат, насыщение поверхностного слоя образца углеродом.

    Особенность – степень цементации легко регулировать, изменяя подачу газа. Такая технология позволяет равномерно насыщать сталь по всей площади.

    Такой способ, с учетом затрат и небольшой сложности, специалисты рекомендуют использовать при мелкосерийном производстве заготовок.

    Твердым карбюризатором

    В качестве насыщающей среды при такой технологии цементации используются полукоксы каменноугольный, торфяной или древесный уголь с гранулами от 3 до 10 мм при обязательном добавлении веществ, инициирующих процесс (активизаторов).

    Методика – обрабатываемые образцы помещаются в металлическую емкость, на песчаный затвор. Они располагаются так, чтобы со всех сторон их можно было обложить слоем карбюризатора. Следовательно, соприкосновение изделий со стенками резервуара или друг с другом не допускается.

    Условия цементации – температура 925 (±25) ºС. Время выдержки зависит от слоя насыщающей среды. Определяется из расчета: на 0,1 мм – 1 час термической обработки. Процесс можно ускорить, доведя нагрев до 975 – 980 ºС. Это сокращает время проведения технологической операции, но повышает эн/затраты и снижает качество готового продукта. На его поверхности образуется сетка, которую придется удалять.

    В ряде случаев это довольно сложно, например, если изделие характеризуется рельефностью.

    Применение алитирования

    Придаваемые свойства изделию во многом определяют область применения рассматриваемой технологии химико-термической обработки. В производстве алитирование сталей применяется для изменения следующих свойств обрабатываемой стали:

    1. Высокая окалиностойкость. Это свойство связано с процессом образования защитной пленки на поверхности изделия при его нагреве.
    2. Высокая защита от окислительных процессов.
    3. Высокие антикоррозионные свойства. В результате алитирования изделие может использоваться даже при условии воздействия морской воды.
    4. Рассматривая твердость поверхностного слоя нужно уделить внимание тому, что максимальный достигаемый показатель составляет около 500HV.

    Рассматривая достоинства и недостатки алитирования стали, нужно отметить тот момент, что воздействие высокой температуры становится причиной перестроения атомной решетки, вследствие чего поверхностный слой становится хрупким.

    При обработке данным химико-термическим методом ответственных деталей, проводится обжиг в течение нескольких часов. Поэтому процесс внесения алюминия характеризуется большой продолжительностью.

    Алитирование стали 20

    Рейтинг
    ( 1 оценка, среднее 4 из 5 )
    Понравилась статья? Поделиться с друзьями: