Схемы и пошаговая инструкция, как сделать автотрансформатор своими руками

ПРИНЦИП РАБОТЫ ЛАБОРАТОРНЫЙ СИЛОВОЙ

Автотрансформатором (АТ) называют разновидность исполнения трансформатора, которая характеризуется наличием на магнитном сердечнике только одной обмотки, имеющей несколько отводов (отпаек).

Каждой отпайке соответствует определённый уровень напряжения. Таким образом, когда говорят о первичной или вторичной обмотке автотрансформатора, подразумевают те или иные обмоточные отпайки.

Особенность электрической схемы автотрансформатора, заключающаяся в наличии только одной обмотки, определяет отличие его технических параметров от характеристики обычного трансформатора.

Основные различия могут быть сформулированы следующим образом:

  • более высокий КПД по сравнению с обычным трансформатором;
  • меньший расход меди и стали при изготовлении обмоточных проводников и магнитопровода, соответственно меньший вес и стоимость оборудования при той же мощности;
  • наличие гальванической связи между первичными и вторичными электрическими сетями.

Повышенный КПД устройства определяется тем, что не вся трансформируемая мощность подвергается электромагнитному преобразованию, так как первичная и вторичная обмотки имеют общий участок. Вследствие этого потери энергии в меди и стали автотрансформатора ниже, чем у трансформатора аналогичной мощности.

Отсутствие необходимости изготавливать и монтировать вторую обмоточную катушку с проводником значительно снижает вес устройства и создаёт лучшие условия для охлаждения меди и стали.

Гальваническую связь между первичной и вторичной электрической сетью принято считать минусом устройства, однако в сетях с заземлённой нейтралью эта особенность роли не играет, а выигрыш в цене оборудования и уменьшение потерь может быть весьма значительным.

Принцип действия

Основной принцип действия автотрансформатора аналогичен обычному аппарату:

  • ток, протекающий по первичной обмотке, создает магнитное поле и магнитный поток в магнитопроводе;
  • величина этого поля зависит от силы тока и от числа витков;
  • изменения магнитного потока наводят ЭДС во вторичной обмотке;
  • величина наведенной ЭДС зависит от числа витков во вторичной обмотке.

Особенность автотрансформатора в том, что часть витков первичной обмотки является также вторичной. В связи с тем, что ЭДС в первичной и вторичной обмотках направлены встречно, ток в общей части катушки I¹² равен разнице I¹ и I². При равенстве входного и выходного напряжения или Ктр=1 I¹² определяется индуктивным сопротивлением катушки.

Автотрансформатор

Автотрансформатор

Автотрансформаторы
— один из видов трансформаторов напряжения, отличительная конструктивная особенность которых состоит в том, что они имеют всего одну обмотку.

Минимальное количество выводов автотрансформаторов — три, при большем их количестве возможно получение на выходе разных значений напряжений.

Из приведенных схем видно, что обмотки электрически связаны: обмотка низшего напряжения представляет собой часть обмотки высшего.

Принцип работы автотрансформатора

. При прохождении напряжения от источника переменного тока, подключенного к обмотке с полным количество витков
W1
возникает ЭДС, индуктируемая магнитным потоком. Ее величина в прямой пропорции зависит от количества задействованных витков W2 обмотки, к которым подключена нагрузка
R
(см. схему 1).

Обозначив условно индуктируемую в обмотке с количеством витков W1

величину ЭДС
E1
, а в обмотке с
W2 — E2
, математически можно выразить коэффициент трансформации
k
следующим соотношением:
E1/E2=W1/W2
.

Ввиду незначительности падения напряжения в обмотке из-за относительно низкого сопротивления примем U1=E1

и
U2=E2
. Таким образом, соотношение
E1/E2=W1/W2
может быть приведено к виду
U1/U2=W1/W2
, из которого понятно, что вторичное напряжение будет меньше первичного
(k)
во столько-же раз, во сколько количество задействованных витков
W2
обмотки меньше
W1
.

В рассматриваемом примере используется понижающий трансформатор (W1>W2)

, при количестве витков
W1
меньшем чем
W2
(см. схему 2) вторичное напряжение будет больше первичного исходя из того же соотношения
U1/U2=W1/W2
.

Область применения автотрансформаторов

довольна широка: устройства небольшой мощности используются для питания, наладки и тестирования бытового и промышленного электрооборудования, устройств автоматического управления, в лабораторных стендах — ЛАТРы, устройствах связи и пр. Силовые трехфазные автотрансформаторы могут быть использованы для уменьшения пусковых напряжений мощных электродвигателей.

В энергетике автотрансформаторы большой мощности успешно используют для связи высоковольтных сетей с близкими по значению напряжениями (110-220 кВ, 220-500 кВ, 330-750 кВ). Коэффициент трансформации этих устройств, как правило не превышает 2-2,5. Для изменений напряжения более этих значений экономическая целесообразность использования автотрансформаторов существенно снижается.

Для этих целей используют трехфазные автотрансформаторы, с соединениями обмоток «звездой» (наиболее часто используемая схема) или «треугольником».

Основные плюсы и минусы

В связи с особенностями конструкции автотрансформатор обладает преимуществами и недостатками по сравнению с обычными устройствами.

Достоинства автотрансформатора, проявляющиеся при Ктр0,5-2:

  • меньший вес и габариты;
  • более высокий КПД, связанный с пониженными потерями в обмотках и магнитопроводе.

Кроме достоинств, эти устройства имеют недостатки:

  • Повышенный ток КЗ. Это связано с тем, что ток нагрузки ограничен не насыщением магнитопровода, а сопротивлением нескольких витков вторичной обмотки.
  • Электрическая связь между первичной и вторичной обмотками. Это делает невозможным применение этих аппаратов в качестве разделительных и для питания низковольтных устройств в опасных условиях, требующих низкого напряжения согласно ПУЭ.

Мощность автотрансформатора

Мощность любого электроаппарата равна произведению тока на напряжение Р=I*A. В обычном трансформаторе она равна мощности нагрузки с учетом КПД.

Мощность автотрансформатора рассчитывается немного иначе. В повышающем напряжение аппарате она складывается из мощности первичной обмотки части Р¹²=I¹²*U¹² и мощности повышающей обмотки Р²=I²*U⅔. В связи с тем, что ток, протекающий через первичную катушку меньше, чем ток нагрузки, то мощность автотрансформатора меньше мощности нагрузки. Фактически, мощность аппарата определяется разностью первичного и вторичного напряжений и током вторичной обмотки P=(U¹-U²)*I².

Автотрансформатор однофазный

Особенно это заметно при небольших (10-20%) отклонениях выходного напряжения. Аналогичным образом рассчитывается понижающий автотрансформатор.

Информация! Это позволяет уменьшить сечение магнитопровода и диаметр провода обмотки. В связи с этим автотрансформатор легче и дешевле обычного устройства.

ПРИНЦИП РАБОТЫ АВТОТРАНСФОРМАТОРА

Рассмотрим принцип работы устройства на примере самой простой схемы с обмоточной катушкой, имеющей три отвода — два крайних и один средний (рис.1).

Полное число витков обмотки Wв подключено к сети высокого напряжения, часть витков до отпайки Wн — к стороне низкого напряжения. Нижний по схеме вывод является общим.

В случае, когда устройство используется как повышающий преобразователь, на выводы Uн подаётся питающее напряжение, с выводов Uв снимается его повышенное значение в результате трансформации. Если мощность направлена от Uв к Uн, питающее напряжение подключается к отпайкам высокой стороны.

Коэффициент трансформации является масштабным показателем преобразования устройства и в данном случае определяется так же, как для обычного трансформатора:

K = Uв/Uн = Wв/Wн,

то есть численно равен отношению количества витков первичной и вторичной обмотки. Коэффициент трансформации может быть выражен также через значения токов. Соотношение в этом случае будет обратным:

K = Iн/Iв = Wв/Wн,

которое иллюстрирует, что с увеличением числа витков и соответственно значения U обмотки, ток в ней пропорционально уменьшается. Физически это означает, что значения мощностей в обмотках одинаковы, если пренебречь величиной потерь.

Сфера применения автотрансформаторов распространяется на различные отрасли, в числе которых:

  • энергетика (электроснабжение), где данные устройства большой мощности широко применяются на сетевых электрических подстанциях;
  • электроника, в которой многие радиотехнические устройства содержат АТ;
  • лабораторные электротехнические устройства регулирования электрических параметров (ЛАТР).

Рис. 1. Обмотки автотрансформатора: 1— трехфазного; 2— однофазного

Распределение токов, в работающем автотрансформаторе в режиме номинальной нагрузки, между обмотками неодинаково. В последовательной обмотке АmАпроходит ток нагрузки ВН — IА. По закону электромагнитной индукции в сердечнике автотрансформатора создается магнитный поток, который индуктирует в обмотке СН ток IAm. Таким образом, ток общей обмотки СН образован суммой токов последовательной обмотки IА с электрической связью (ВН и СН), и тока IAm, по магнитной связи этих же обмоток — IСН=IА+IAm.

Рис. 1. Обмотки автотрансформатора: 1— трехфазного; 2— однофазного

Значение мощности на выходе автотрансформатора равно мощности на его входе. При отсутствии обмотки НН, мощность ВН равна мощности СН, это и есть номинальная мощность Sном автотрансформатора по электрической связи. Она равна произведению номинального напряжения обмотки ВН UВН, на номинальный ток IВН последовательной обмотки.

Рассчитывают еще и типовую мощность автотрансформатора называют, которая составляет часть номинальной мощности, передаваемой электромагнитным путем.

Sт=Sном*ав, где ав=1-UСН/UВН — коэффициент выгодности автотрансформатора. Он определяет долю типовой мощности в составе номинальной, чем она меньше, тем меньше габариты и сечения сердечника (магнитопровода) и обмоток автотрансформатора, которые рассчитываются исходя не из полной номинальной, а только из её части — типовой мощности. Поэтому изготовление автотрансформаторов значительно дешевле, чем обычных трансформаторов такой же мощности.

Мощность на общей обмотке является одним из главных параметров, которые нужно контролировать при работе автотрансформатора, превышение её в длительном режиме недопустимо. На рисунке 1 показаны варианты подключения амперметра для измерения нагрузки на общей обмотке при трехфазном и однофазном варианте автотрансформатора.

Чем меньше коэффициент трансформации (чем ближе значения UСН и UВН), тем выгоднее использование автотрансформаторов и дешевле их изготовление.

На рисунке 2 показаны схемы регулирования напряжения выхода Аmна автотрансформаторе на стороне ВН (1) и на стороне СН (2). Таковы устройство и принципы работы автотрансформаторов.

2. Меньшая масса и габариты позволяют создавать трансформаторы больших мощностей.

Мощность, передаваемая первичной обмоткой во вторичную цепь автотрансформатора, будет равна:

Учитывая, что I2 = I1 + I12, ее можно записать в виде:

Здесь U2 I1 = SЭ , есть мощность, поступающая во вторичную цепь электрическим путем, U2 I12 = Sм – мощность, поступающая во вторичную цепь посредством магнитного потока.

Следовательно, в автотрансформаторе посредством магнитного потока передается только часть мощности, что дает возможность уменьшить поперечное сечение магнитопровода. Магнитные потери при этом также уменьшаются. При меньшем поперечном сечении магнитопровода уменьшается средняя длина витка обмотки, следовательно, вновь уменьшается расход обмоточной меди и снижаются электрические потери.

1. Меньший расход меди, стали, а также изоляционных материалов и меньшая стоимость по сравнению с трансформаторами той же мощности.

2. Меньшая масса и габариты позволяют создавать трансформаторы больших мощностей.

3. Автотрансформаторы имеют меньшие потери и больший КПД.

4. Имеют лучшие условия охлаждения.

1. Необходимость глухого заземления нейтрали, что приводит к увеличению токов однофазного КЗ.

2. Сложность регулирования напряжения.

3. Опасность перехода атмосферных перенапряжений с одной обмотки на другую из-за электрической связи обмоток.

У однофазного автотрансформатора всего одна обмотка. В режиме холостого хода автотрансформатор ничем не отли­чается от обычного трансформатора. В режиме нагрузки по общей части витков протекает ток, который равен разности токов (i1
i2),
так как вторичный ток ослабляет магнитный поток в сердечнике (т. е. соответствующий магнитный поток имеет знак, противоположный знаку потока, создаваемого током первичной обмотки).

Что такое ЛАТР

Кроме силовых аппаратов, заменяющих обычные трансформаторы, в школах, институтах и лабораториях используются ЛАТРы – Лабораторные АвтоТРанформаторы. Эти устройства используются для плавного изменения напряжения на выходе аппарата. Самые распространенные конструкции представляют из себя катушку, намотанную на тороидальном магнитопроводе. С одной из сторон провод очищен от лака и по нему при помощи поворотного механизма двигается графитный ролик.

Питающее напряжение подаётся на концы катушки, а вторичное снимается с одного из концов и графитного ролика. Поэтому ЛАТР не может поднимать напряжение выше сетевого, в некоторых модификациях выше 250В.

Кроме катушечных, есть электронные ЛАТРы. Фактически, это не автотрансформатор, а регулятор напряжения. Есть разные виды таких устройств:

  • Тиристорный регулятор. В этих аппаратах в качестве силового элемента установлены тиристор и диодный мост или симистор. Недостаток в отсутствии синусоидальной формы выходного напряжения. Самый известный прибор такого типа – диммер ламп освещения.
  • Транзисторный регулятор. Дороже тиристорного, требует установки транзисторов на радиаторы. Обеспечивает синусоидальную форму выходного напряжения.
  • ШИМ-контроллер.

Старый латр

Совет! Для того, чтобы получить напряжение выше сетевого, ЛАТР подключается ко вторичной обмотке повышающего трансформатора.

Что такое автотрансформатор?

С развитием энергетики и связанных с ней электрических сетей для передачи переменного тока, как источника питания для различных устройств, возникла необходимость в приборах, изменяющих величину напряжения. Такими универсальными электромагнитными устройствами, позволяющими повышать или понижать исходное напряжение до требуемой величины, стали трансформаторы.

Со временем, для обеспечения стабильной работы электроприборов, преимущественно бытового назначения, возникла необходимость плавного регулирования напряжения. Это стало возможным после того, как был изобретён автотрансформатор – устройство, в котором вторичная обмотка является составной частью первичных витков.

Что такое автотрансформатор?

Из школьного курса физики известно, что простейший трансформатор состоит из двух катушек, намотанных на железные сердечники. Магнитным полем переменного тока, запитанного через выводы первичных обмоток, возбуждаются электромагнитные колебания во второй катушке, с аналогичной частотой.

При подключении нагрузки, к выводам рабочей обмотки, она образует вторичную цепь, в которой возникает электрический ток. При этом напряжение в образованной электрической цепи связано прямо пропорциональной зависимостью с количеством витков обмоток. То есть: U1/U2 = w1/w2 , где U1, U2 – напряжения, а w1, w2 – количество полных витков в соответствующих катушках.


Рисунок 1. Схема обычного трансформатора и автотрансформатора

Немного по-другому устроен автотрансформатор. Он, по сути, состоит из одной обмотки, от которой сделано один или несколько отводов, образующих вторичные витки. При этом все обмотки образуют между собой не только электрическую, но и магнитную связь. Поэтому, при подаче электрической энергии на вход автотрансформатора, возникает магнитный поток, под действием которого происходит индукция ЭДС в обмотке нагрузки. Величина электродвижущей силы связана прямой пропорциональностью с числом витков, образующих нагрузочную обмотку, с которой снимается напряжение.

Таким образом, формула, приведённая выше, справедлива и для автотрансформатора.

Из основной обмотки можно отводить большое количество выводов, что позволяет создавать комбинации для снятия различных по величине напряжений. Это очень удобно на практике, так как понижение напряжения часто требуется для питания нескольких блоков электроприборов, использующих различные напряжения.

Отличие автотрансформатора от обычного трансформатора

Как видно из описания автотрансформатора, главное его отличие от обычного трансформатора – отсутствие второй катушки с сердечником. Роль вторичных обмоток выполняют отдельные группы витков, имеющих гальваническую связь. Эти группы не требуют отдельной электрической изоляции.

Область применения

Особенности автотрансформатора позволяют применять его в быту и разных областях промышленности.

Металлургическое производство

Регулируемые автотрансформаторы в металлургии применяются для проверки и настройки защитной аппаратуры прокатных станов и трансформаторных подстанций.

Коммунальное хозяйство

До появления автоматических стабилизаторов эти аппараты применялись для обеспечения нормальной работы телевизоров и другой аппаратуры. Они представляли из себя обмотку с большим числом отводов и переключателем. Он переключал вывода катушки, а выходное напряжение контролировалось при помощи вольтметра.

В настоящее время автотрансформаторы используются в релейных стабилизаторах напряжения.

Справка! В трехфазных стабилизаторах установлены три однофазных автотрансформатора, и регулировка производится в каждой фазе по-отдельности.

Латр

Химическая и нефтяная промышленность

В химической и нефтяной промышленности эти аппараты применяются для стабилизации и регулировки химических реакций.

Производство техники

В машиностроении такие аппараты используются для пуска электродвигателей станков и управления скоростью вращения дополнительных приводов.

Учебные заведения

В школах, техникумах и институтах ЛАТРы применяются при выполнении лабораторных работ и демонстрации законов электротехники, и опытах по электролизу.

Изготовление самодельного ЛАТРа

В продаже есть достаточно готовых устройств, но при необходимости его можно сделать самостоятельно. За основу лучше взять трансформатор на О- или Ш-образном магнитопроводе. Изготовление ЛАТРа на тороидальном железе сводится к его перемотке и требует очень высокой аккуратности при наматывании катушки.

Подготовка материала

Для изготовления регулируемого автотрансформатора необходимы:

  • Магнитопровод. Его сечение определяет мощность автотрансформатора.
  • Обмоточный провод. Его сечение зависит от мощности и потребляемого тока устройства.
  • Термоустойчивый лак. Необходим для пропитки катушки после намотки проводов. Допускается замена масляной краской.
  • Тряпичная изолента или киперная лента и корпус с закрепленными разъемами для подключения нагрузки и питания. Желательно разместить в корпусе цифровой или аналоговый вольтметр
  • Многопозиционный переключатель. Его допустимый ток должен соответствовать току аппарата. При необходимости допускается производить переключение выводов автотрансформатора при помощи пускателей.

Расчет провода

Перед началом намотки катушки необходимо определить сечение провода и необходимое количество витков/вольт (n/v). Этот расчёт производится по поперечному сечению магнитопровода при помощи онлайн-калькуляторов или по специальным таблицам.

Если для изготовления устройства используется исправный трансформатор, то эти параметры определяются по имеющимся обмоткам:

  • подключить трансформатор к сети 220В;
  • вольтметром измерить выходное напряжение V;
  • отключить аппарат;

ЛАТР дома

  • разобрать магнитопровод;
  • размотать вторичную обмотку, считая количество витков N;
  • по формуле n/v=N/V вычислить количество витков/вольт – основной параметр для расчета катушки;
  • измерить сечение провода первичной обмотки.

Совет! Если первичная обмотка не была пропитана лаком и разматывается без нарушения изоляции, то допускается использовать её для намотки катушки автотрансформатора.

Схема

Перед началом работ составляется схема обмотки с указанием количества витков и напряжением на каждом из выводов. В отличие от обычного трансформатора автотрансформатор имеет только одну обмотку, которая изображается с одной из сторон черты, символизирующей магнитопровод.

Для расчетов витков необходимо определить число выводов. Оно зависит от количества положений многопозиционного переключателя. Один из отводов может совпадать с сетевым выводом:

  • определить и указать на схеме напряжение V каждого из положений переключателя;
  • рассчитать необходимое число витков между отводами по формуле N=(n/v)*(V²-V³), где V¹, V², V³ и т.д. – напряжение на последующих выводах;
  • указать на схеме количество витком между каждыми из отводов.

Схема автотрансформатора

Совет! При необходимости сделать повышающий автотрансформатор к первичной обмотке добавляется необходимое количество витков. Для этого допускается использовать провод, снятый со вторичной обмотки.

Намотка катушки

После выполнения всех расчётов производится намотка катушки. Она выполняется на готовом или специально изготовленном каркасе вручную или при помощи намоточного станка:

  • наматывается необходимое число витков в секции;
  • выполняется ответвление – из обмоточного провода, не обрывая его, делается петля длиной 5-20 см и скручивается в жгут;
  • после изготовления отвода продолжается намотка катушки;
  • операции 1-3 повторяются до завершения намотки;
  • готовая обмотка закрепляется киперной лентой и покрывается лаком или краской.

Процесс сборки

После завершения намотки и высыхания лака производится сборка автотрансформатора:

  • собирается магнитопровод;
  • собранный аппарат устанавливается в корпус;
  • подключаются многопозиционный переключатель и вольтметр;
  • собранный автотрансформатор подключается к клеммам.

Катушка трансформатора

Проверка

После сборки работоспособность устройства необходимо проверить:

  • первичная обмотка аппарата подключается к сети;
  • измеряются напряжения при каждом из положений переключателя и данные сравниваются с расчетными;
  • через 20 минут трансформатор отключается и проверяется на нагрев – при его отсутствии производятся повторные испытания под нагрузкой.

Электронный автотрансформатор

Более современным способом регулировки является использование электронных устройств. Любое из них можно изготовить своими руками.

Тиристорный регулятор

Простейшая схема такого приспособления представляет собой переменный резистор, включенный между анодом и управляющим электродом тиристора. Это позволяет получать пульсирующее постоянное напряжение и управлять им в диапазоне 0-110В.

Для регулировки переменного напряжения 0-220В применяется встречно-параллельная схема соединения, а резистор включается между управляющими электродами.

Вместо двух тиристоров целесообразно применение симистора, а в качестве схемы управления использовать диммер для ламп накаливания.

Тиристорный регулятор

Транзисторное управление

Самая качественная регулировка получается при использовании транзисторного регулятора. Он обеспечивает плавное изменение и правильную форму выходного напряжения.

Недостаток этой схемы в нагреве выходных транзисторов. Для его уменьшения и повышения КПД целесообразно подключить регулятор к выходным клеммам автотрансформатора – грубая регулировка осуществляется переключением обмоток, а плавная при помощи транзисторов.

Устройство и принцип действия трансформатора

Главная > Контрольная работа >Физика

Устройство и принцип действия трансформатора

Трансформатор — статический электромагнитный аппарат, служащий для преобразования переменного тока одного напряжения и переменный ток той же частоты, но другого напряжения. Потребность трансформирования — повышения и понижения переменного напряжения — вызвана необходимостью передачи электрической энергии на большие расстояния. Чем выше напряжение, чем при равной мощности источника энергии меньше ток. Следовательно, для передачи энергии требуются провода меньшего сечения, что приводит к значительной экономии цветных металлов, из которых изготовляются провода линий электропередачи. Потери электрической энергии в проводах также уменьшаются с уменьшением тока. При передаче электрической энергии от электростанций к потребителям происходит многократное повышение и понижение напряжения.

Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями: