А.А.Щербаков. «Летчики, самолеты, испытания»

Титан считается самым прочным тугоплавким металлом, сохраняющим пластичность. Он прочнее железа и алюминия. Впервые сплав был получен русским ученым в 1875 году. В 1925-м голландскому химику удалось получить чистый 99,9% металл. Благодаря высокой температуре плавления, титан незаменим в космической отрасли, авиастроении. Легкий, химически нейтральный, он используется и в других отраслях.

Характеристики титановых сплавов

Для легирования титана используют несколько компонентов:

  • Алюминий – самая распространенная добавка. Он повышает удельную прочность, упругость, сопротивление ползучести.
  • Олово замедляет окисление при нагреве, повышает пластичность, свариваемость.
  • Благодаря цирконию, Ti-Al-Zr деформируется при комнатной температуре.
  • Марганец повышает способность к деформации.
  • Кремний улучшает трещиностойкость.
  • Ванадий – свариваемость.
  • Система Ti-Al-Mo-Cr-Fe-Si – высокопрочная. Это металл мартенситного класса.
  • Молибден увеличивает жаропрочность титана.

Чистый титан имеет предел прочности до 450 МПа, легирующие добавки способны повысить ее до 2000 МПа. При охлаждении у титана повышается прочность на изгиб. При комнатной температуре составляет 700 МПа, около -200°С возрастает до 1100 МПа.

Физические свойства

Основные характеристики титана:

  • температуры: плавления 1668 градусов Цельсия, кипения – 3227;
  • предел текучести: от 250 до 380 МПа;
  • упругость – 110 Гпа, различается в разных направлениях;
  • средняя твердость сплавов по НВ – 103;
  • плотность: при комнатной температуре 4500 кг/м3, при температуре плавления – 4120 кг/м3;
  • теплоемкость – 531 Дж на один килограмм при нагреве на градус;
  • теплопроводность – 18 Вт/(м·град);
  • удельное сопротивление – 42,1·10-6 Ом·см.

При охлаждении до 3,8°К (-270°С) металл становится сверхпроводником.

Химические свойства

В твердом состоянии Тi химически устойчив, не окисляется при высокой влажности, морской атмосфере, при контакте с агрессивными средами. При нагреве до температуры плавления становится активным. Взаимодействует со всеми компонентами воздуха:

  • кислородом, образуются твердые оксиды;
  • азотом, он упрочняет структуру, повышает предел прочности, критическая концентрация 0,2%, выше этого показателя металл становится хрупким;
  • водород ухудшает технологические свойства;
  • углерод повышает температуру фазовых изменений.

При нагреве до температуры плавления металл необходимо изолировать.

Структура металла

По внешнему виду металл больше всего напоминает сталь, однако механические его качества выше. При этом титан отличается малым весом – молекулярная масса 22. Физические свойства элемента изучены довольно хорошо, однако сильно зависят от чистоты металла, что приводит к существенным отклонениям.

Кроме того, имеет значение его специфические химические свойства. Титан устойчив к щелочам, азотной кислоте, и в то же время бурно взаимодействует с сухими галогенами, а при более высокой температуре – с кислородом и азотом. Хуже того, он начинает поглощать водород еще при комнатной температуре, если имеется активная поверхность. А в расплаве впитывает кислород и водород настолько интенсивно, что расплавление приходится проводить в вакууме.

Еще одна важная особенность, определяющая физические характеристики – существование 2 фаз состояния.

  • Низкотемпературная – α-Ti имеет гексагональную плотноупакованную решетку, плотность вещества – 4,55 г/куб. см (при 20 С).
  • Высокотемпературная – β-Ti характеризуется объемно-центрированный кубической решеткой, плотность фазы, соответственно, меньше – 4, 32 г/куб. см. (при 900С).

Температура фазового перехода – 883 С.

В обычных условиях металл покрывается защитной оксидной пленкой. При ее отсутствии титан представляет большую опасность. Так, титановая пыль может взрываться, температура такой вспышки 400С. Титановая стружка является пожароопасным материалом и хранится в специальной среде.

Далее мы рассмотрим магнитные, механические, химические и физические свойства титана, его сплавов и их применение.

О структуре и свойствах титана рассказывает видео ниже:

Литье титана

Во время нагрева до температуры плавления титан активно реагирует с компонентами воздуха.

Чтобы этого не происходило, воздух в печах откачивали, создавали вакуум. Остатки воздуха стали вытеснять инертными газами: смесью аргона и гелия. На промышленных литейных установках остаточное давление инертных газов колеблется от 1,33 до 0,13 Па.

Разработано несколько технологий:

В вакуумной камере металл расплавляют, разливают по формам. Охлаждают до температуры, когда металл теряет химическую активность, образует кристаллическую структуру.

Метод вакуумного литья (МВЛ) по выплавляемым моделям заключается в использовании выплавляемых или выжигаемых форм. На поверхности модели создают огнеупорную оболочку. Отливки получаются максимально приближенной формы.

Технология оболочечного литья предусматривает использование тонкостенных разъемных форм. Их устанавливают на разогретую модельную плиту, чтобы покрыть термоактивной смолой. Заливка производится вертикально и горизонтально.

Специально разрабатывается температурный режим остывания отливок. Предусмотрено равномерное структурирование по всему объему, чтобы в литье не возникали внутренние напряжения.

Достоинства / недостатки

    Достоинства:
  • малая плотность (4500 кг/м 3 ) способствует уменьшению массы выпускаемых изделий;
  • высокая механическая прочность. Стоит отметить, что при повышенных температурах (250-500 °С) титановые сплавы по прочности превосходят высокопрочные сплавы алюминия и магния;
  • необычайно высокая коррозионная стойкость, обусловленная способностью Ti образовывать на поверхности тонкие (5-15 мкм) сплошные пленки оксида ТiO2, прочно связанные с массой металла;
  • удельная прочность (отношение прочности и плотности) лучших титановых сплавов достигает 30-35 и более, что почти вдвое превышает удельную прочность легированных сталей.
    Недостатки:
  • высокая стоимость производства, Ti значительно дороже железа, алюминия, меди, магния;
  • активное взаимодействие при высоких температурах, особенно в жидком состоянии, со всеми газами, составляющими атмосферу, в результате чего Ti и его сплавы можно плавить лишь в вакууме или в среде инертных газов;
  • трудности вовлечения в производство титановых отходов;
  • плохие антифрикционные свойства, обусловленные налипанием Ti на многие материалы; титан в паре с титаном вообще не может работать на трение;
  • высокая склонность Ti и многих его сплавов к водородной хрупкости и солевой коррозии;
  • плохая обрабатываемость резанием, аналогичная обрабатываемости нержавеющих сталей аустенитного класса;
  • большая химическая активность, склонность к росту зерна при высокой температуре и фазовые превращения при сварочном цикле вызывают трудности при сварке титана.

А.А.Щербаков. «Летчики, самолеты, испытания»

Оглавление

Крылатый металл титан

В шестидесятые годы в производстве авиационных двигателей стал применяться титан. Этот металл по удельному весу, механическим качествам и термопрочности имел преимущества по сравнению со сталью. Применение его в двигателях позволяло снизить их удельный вес. Но применение его требовало некоторых технологических и конструкторских новаций: помимо качеств полезных он обладал низкой температурой возгорания; возгоравшись, превращался в страшную разрушительную силу. Если на самолете возникал пожар топлива, то температура горения достигала немногим более 1000 . Такой пожар давал экипажу время для его обнаружения, и применения мер тушения или покидания самолета. При горении титана температура достигает 3000 . Пламя такого пожара режет конструкцию, как нагретый нож сливочное масло. Разрушение идет столь стремительно, что экипаж оказывается в крайне трудном положении. В обычных условиях титан возгореться не может, даже достиг­нув температуры возгорания, для его горения требуется слишком много кислорода. Но в реактивном двигателе, в котором компрессор сделан из титана, температура достаточно высокая, а кислорода хоть отбавляй: через компрессор проходят сотни кубометров воздуха в секунду. Если из-за уменьшения зазора между лопатками компрессора и корпусом возникнет хотя бы легкое касание, совсем незначительное чирканье, то уж лучше и не говорить! Горящий титан — это вулкан внутри реактивного двигателя. Вот как это бывало на практике. На сибирский завод направлена аварийная комиссия. В программе сдаточных испытаний Су-24 предусмотрен «обжим» по скорости. Это значит, на высоте 1000 метров нужно получить скорость 1400 километров в час. Для этого отведена специальная трасса, чтобы сверхзвуковые удары не беспокоили жителей близлежащих деревень. Во время этого режима экипаж катапультировался. Летчик приземлился нормально. Штурману по самое бедро оторвало ногу, и он погиб от шока и потери крови. Как и что произошло, летчик понять и рассказать не мог. Жители деревни, находящейся недалеко от трассы, часто видевшие пролет по ней самолетов, в этот раз даже не опознали самолет. Они говорили, что по небу катилась какая-то огненная бочка. В процессе расследования делается «выкладка» деталей, привезенных с места падения. На бетонном полу ангара рисуется контур самолета, и на него кладут обломки в соответствии с их положением на самолете. Члены комиссии с удивлением и недоумением рассматривают детали. Массивный лонжерон с одного конца — вполне нормального вида, а с другого имел вид мочалки. Вот что может сделать с металлом титановое пламя. Была найдена консоль крыла со следами крови и человеческой плоти. Это она оторвала ногу штурману. Но она находилась позади траектории катапультного кресла. Как такое могло произойти, никто понять не мог. Еще во время Хрущева боевые самолеты резали электросваркой. Красивые новые машины, лишаясь связи и опоры между своими частями, превращались в груды металлолома. А если это происходит в воздухе на скорости 1400 километров в час? Никакие ЭВМ, никакое моделирование не способны прогнозировать или объяснить в таком случае движение частей самолета. Вот что такое титановый пожар в полете. В этом случае он был зафиксирован совершенно достоверно. К сожалению, описанный случай был не единственным. В ЛИИ летчик Александр Андреевич Муравьев на самолете с тем же двигателем, что и у Су-24, выполнял скоростную площадку. И вдруг!.. Совершенно немыслимое движение самолета. Муравьев хорошо знал все мыслимые виды движения, до штопора включительно. Но тут было нечто невероятное: самолет как бы кувыркался через голову. Александр успел благополучно катапультироваться. Титановый пожар был также установлен. Еще титановый пожар был причиной аварии опытного МиГ-29. К счастью, Валерий Меницкий также смог катапультироваться. В дальнейшем конструкторы двигателей нашли безопасные способы, как использовать титан, и сейчас он ведет себя в авиадвигателях вполне лояльно.

<< Перелеты в Америку на АНТ-25Еще о рекордных перелетах >>

Нахождение титана в природе

Титан занимает почётное четвёртое место по содержанию в земной коре среди важных для человека металлов, уступая только железу, магнию и алюминию. Максимальное его количество сосредоточено в нижнем, базальтовом слое, немного меньше — в гранитном. Принимая во внимание высокую химическую активность, найти титан в чистом виде не представляется возможным. Наиболее распространены четырёхвалентные оксиды, которые концентрируются в рудах коры выветривания и в морской глине.

Сегодня насчитывают до 75 титановых минералов, а учёные периодически заявляют об открытии всё новых форм и соединений. Для промышленной переработки наибольшее значение имеют:

  • Ильменит.
  • Лейкоксен (продукт изменения ильменита).
  • Рутил.
  • Титанит (сфен).
  • Перовскит.
  • Анатаз.
  • Титаномагнетит.
  • Брукит.

Титан — слабый мигрант, он может переноситься только в виде механических обломков каменной породы или при перемещениях коллоидных илистых слоёв водоёмов. Для биосферы характерно содержание максимальных количеств этого металла в морских водорослях, у животных он обнаружен в шерсти и роговых тканях, в организме человека присутствует в щитовидной железе, селезёнке, надпочечниках и плаценте.

Способ получения из сырья

Исходное сырьё — двуокись титана, содержащая мало посторонних примесей. Для этого нужен рутиловый концентрат, получаемый обогащением руды. Но его мировые запасы невелики, и чаще применяют титановый шлак (синтетический рутил), который получают термической обработкой — обогащением ильменитовых концентратов в электродуговой печи. В результате железо в виде чугуна собирается на дне специальной ванны, и остаётся порошок серого цвета — шлак, содержащий оксид титана. Его измельчают, смешивают с углём, брикетируют и хлорируют в печах, где при 800 °C в присутствии углерода образуются пары четырёххлористого титана.

Потом их очищают и в специальных реакторах восстанавливают магнием при 950 °C. На стенках образуется спёкшаяся пористая масса, титановая губка, которую для сепарации от соединений магния прокаливают в вакууме. Чтобы изготовить слитки титана используют плавку полученной губки в вакуумно-дуговых печах. Это предохраняет металл от окисления и способствует окончательному освобождению от примесей. Готовые слитки с чистотой до 99,7% используют для обработки давлением (прокатка, штамповка, ковка).

Свойства и характеристики титана

Титан на сегодня является самым прочным среди всех существующих технических материалов, поэтому, несмотря на сложность получения и высокие требования по безопасности к производственному процессу, применяется достаточно широко. Физические характеристики элемента довольно необычны, однако очень сильно зависят от чистоты. Так, чистый титан и сплавы активно применяются в ракето- и авиастроении, а технический непригоден, так как из-за примесей теряет прочность при высоких температурах.

Плотность металла

Плотность вещества изменяется в зависимости от температуры и фазы.

  • При температурах от 0 до температуры плавления уменьшается от 4,51 до 4,26 г/куб. см, причем во время фазового перехода повышаете на 0,15%, а затем вновь уменьшается.
  • Плотность жидкого металла составляет 4,12 г/куб. см, а затем уменьшается с повышением температуры.

Температуры плавления и кипения

Фазовый переход разделяет все свойства металла на качества, которые может проявлять α- и β-фазы. Так, плотность до 883 С, относится к качествам α-фазы, а температуры плавления и кипения – к параметрам β-фазы.

  • Температура плавления титана (в градусах) составляет 1668+/-5 С;
  • Температура кипения достигает 3227 С.

При какой температуре плавится титан

Титан считается самым прочным тугоплавким металлом, сохраняющим пластичность. Он прочнее железа и алюминия. Впервые сплав был получен русским ученым в 1875 году. В 1925-м голландскому химику удалось получить чистый 99,9% металл. Благодаря высокой температуре плавления, титан незаменим в космической отрасли, авиастроении. Легкий, химически нейтральный, он используется и в других отраслях.

Месторождения космического материала

Самыми распространёнными являются залежи ильменита, они составляют порядка 800 млн тонн. Запасы рутиловых руд значительно меньше, но при сохранении роста добычи все они могут обеспечить человечество ещё на 100 лет. По запасам титана Россия уступает только Китаю и насчитывает 20 разведанных месторождений. Большинство из них — комплексные, где добывают также железо, фосфор, ванадий и цирконий. Сегодня крупнейшим мировым производителем титана считается российская металлургическая .

Обширные залежи располагаются на территории ЮАР, Украины, Канады, США, Бразилии, Австралии, Швеции, Норвегии, Египта, Казахстана, Индии и Южной Кореи. Они различаются содержанием металла в рудах и объёмами добычи, геологические изыскания не прекращаются. Даже на Луне были обнаружены запасы титаносодержащих руд, некоторые из них в десятки раз богаче крупных месторождений Земли. Это позволяет надеяться на снижение рыночных цен металла и расширение сферы использования.

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями: