Удельный вес нержавейки aisi 304. плотность нержавеющей стали


Химический состав

Расшифровка марки стали Ст3 указывает на основные компоненты в ее составе – железо (97%) и углерод (0,14-0,22%). От концентрации углерода зависит основное качество сплава – его твердость. В состав стали входят также небольшие количества:

  • марганца – 0,4-0,65%;
  • кремния – 0,15-0,17%;
  • никеля и хрома – по 0,3%;
  • мышьяка – 0,08%;
  • меди – до 0,3%;
  • серы – 0,05%;
  • фосфора – 0,04%;
  • азота – до 0,008%.

Особенностью сплава Ст3 является жесткое регламентирование содержания вредных примесей – серы и фосфора. Фосфор снижает пластичность металла при действии высоких температур, а сера при взаимодействии с железом образует сульфиды, вызывающие явление красноломкости. Следует отметить и повышенную концентрацию азота, на который приходится почти 0,1%. В соответствии с ГОСТом 380-2005 сплав маркируется с сопутствующими индексами, которые указывают на степень раскисления, например, Ст3Гсп:

  • первые две буквы указывают на углеродистую сталь обыкновенного качества;
  • цифра «3» означает порядковый номер марки по данному ГОСТу;
  • знак «Г» свидетельствует о модификации с повышенным содержанием марганца;
  • «сп», «кп», «пс» – степени раскисления.

Заменителями марки стали Ст3 могут выступать:

  • С245, согласно ГОСТу 27772-88;
  • С285;
  • ВСт3Сп.

Зарубежные аналоги маркируются по другим правилам:

  • A57036, K01804 – США;
  • 40B, 722M24, HFS4 – Великобритания;
  • 1.0038, DC03 – Германия;
  • E24-2, E24-4 – Франция;
  • SS330, SS400 – Япония;
  • Fe360B, Fe360C – Италия;
  • G235C – Китай;
  • RSt360B – Австрия;
  • Fe235D – Венгрия.

Номенклатура продукции включает:

  • сортовой и фасонный прокат по ГОСТу 2591-2006;
  • листы различной толщины и штамповки;
  • трубы и арматуру, согласно ГОСТу 10705-80;
  • ленты и полосы, которые выпускаются по ГОСТу 14918-80;
  • проволоку разного сечения.

ГОСТ

Сварка нержавеющей стали
Производство изделий марки 20 имеет свои стандарты:

  • Прокаты фасонного и сортового типа делаются в соответствии норм и правил ГОСТ, изданными в следующих номерах: 1050-88, 2590-2006, 2591-2006, 2879-2006, 8509-93, 8510-86, 8240-97, 8239-89.
  • Пруток калиброванный изготавливается в соответствии со стандартами ГОСТ: 7417-75, 8559-75, 8560-78, 10702-78.
  • Серебрянка и шлифованный пруток регламентируются ГОСТ 14955-77.
  • Толстые листы представляют собой заготовки, выполненные в строгом соответствии со стандартами ГОСТ 1577-93 и ГОСТ 19903-74.
  • Тонкие листы изготавливаются в соответствии с ГОСТ 16523-97.
  • Производство лент происходит строго в соответствии четырех стандартов ГОСТ: 6009-74, 10234-77, 103-2006, 82-70.
  • Проволочные изделия подлежат заготовки по ГОСТу 5663-79 и ГОСТу 17305-91.
  • Заготовки кованого типа, а также поковки изготавливаются согласно правилам и принятым стандартам ГОСТ 8479-70.
  • Трубы подлежат регламенту семи ГОСТов: 10704-91, 10705-80, 8731-74, 8732-78, 8733-74, 5654-76 и 550-75.

Нержавеющая сталь 12Х18Н10Т

Заменители

Заменитель — стали 08Х18Г8Н2Т, 10Х14Г14Н4Т, 12Х17Г9АН4, 08Х22Н6Т, 08X17Т, 15Х25Т, 12Х18Н9Т.

Иностранные аналоги

Германия DINМаркаX10CrNiTi18-9
Номер1.4541
США (AISI, SAE, ASTM)321
Франция (AFNOR)Z10CN18
Великобритания (BS)320S31
Швеция (SS)2337
Италия UNI
ЯпонияSUS321

ВАЖНО!!! Возможность замены определяется в каждом конкретном случае после оценки и сравнения свойств сталей

Расшифровка стали 12Х18Н10Т

Цифра 12 указывает среднее содержание углерода в сотых долях процента, т.е. для стали 12Х18Н10Т это значение равно 0,12%.

Буква «Х» указывает на содержание в стали хрома. Цифра 18 после буквы «Х» указывает примерное количество хрома в стали в процентах, округленное до целого числа, т.е. содержание хрома около 18%.

Буква «Н» указывает на содержание в стали никеля. Цифра 10 после буквы «Н» указывает примерное количество никеля в стали в процентах, округленное до целого числа, т.е. содержание никеля около 10%.

Буква «Т» указывает на содержание в стали титана. Содержание титана в стали не превышает 1,5%.

Вид поставки

Cортовой прокат, в том числе фасонный: ГОСТ 5949-75, ГОСТ 2590-88, ГОСТ 2879-88. Калиброванный пруток ГОСТ 7417-75, ГОСТ 8559-75, ГОСТ 8560-78. Шлифованный пруток и серебрянка ГОСТ 14955-77, ГОСТ 18907-73. Лист толстый ГОСТ 7350—77. Лист тонкий ГОСТ 5582—75. Лента ГОСТ 4986—79. Проволока ГОСТ 18143—72. Поковки и кованые заготовки ГОСТ 25054—81, ГОСТ 1133-71. Трубы ГОСТ 9940-72, ГОСТ 9941-72, ГОСТ 14162-79.

Свариваемость

Сталь 12Х18Н10Т является свариваемой без ограничений. Способы сварки: РДС, ЭШС и КТС (Контактно Точечная Сварка). Рекомендуется последующая термообработка.

Технологические свойства

Температура ковки, °С: начала 1200, конца 850. Сечения до 350 мм охлаждаются на воздухе. Обрабатываемость резанием — Kv тв.спл = 0,85 и Kv б.ст = 0,35 в закаленном состоянии при НВ 169 и σв = 610 МПа. Флокеночувствительность — не чувствительна.

Химический состав, % (ГОСТ 5632-2014)

СтальCSiMnCrNiTiSP
12Х18Н10Тне более 0,12не более 0,80не более 2,0017,0-19,09,0-11,05,0-8,0не более 0,02не более 0,40

Применение 12Х18Н10Т

Назначение — детали, работающие до 600 °С; сварные аппараты и сосуды, работающие в разбавленных растворах азотной, уксусной, фосфорной кислот, растворах щелочей и солей и другие детали, работающие под давлением при температуре от -196 до +600 °С, а при наличии агрессивных сред — до +350 °С.

Сталь коррозионностойкая (нержавеющая) аустенитного класса и преимущественно применяется как коррозионостойкая, но может применяться и как жаростойкая и жаропрочная. По жаростойкости близка к стали 12Х18Н9Т.

Применяется для изготовления свариваемой аппаратуры в разных отраслях промышленности.

Примерное применение как жаростойкой стали

Назначение — трубы, детали печной арматуры, теплообменники, муфели, реторты, патрубки и коллекторы выхлопных систем, электроды искровых зажигательных свечей. Рекомендуемая максимальная температура применения в течение длительного времени (до 10000 ч), 800°С.

Температура начала интенсивного окалинообразования в воздушной среде, 850°С.

Неустойчива в серосодержащих средах. Применяются в случаях, когда не могут быть применены безникелевые стали.

Примерное применение как жаропрочной стали

Детали выхлопных систем, трубы, листовые и сортовые детали.

Рекомендуемая максимальная температура применения, 600°С.

Срок службы — Весьма длительный.

Температура начала интенсивного окалинообразования в воздушной среде, 850°С.

Применение стали 12Х18Н10Т для корпусов, крышек, фланцев, мембран и узла затвора, изготовленных из проката, поковок (штамповок) (ГОСТ 33260-2015)

Марка сталиНД на поставкуТемпература рабочей среды (стенки), °СДополнительные указания по применению
12Х18Н10Т ГОСТ 5632Сортовой прокат ГОСТ 5949. Листы ГОСТ 7350. Поковки ГОСТ 25054. Трубы ГОСТ 9940, ГОСТ 9941 (из 12Х18Н10Т)От -270 до 350Для сварных узлов арматуры, работающих в агрессивных средах: HNO3, щелочей, аммиачной селитры, пищевых сред, сред спецтехники, судовой арматуры, криогенных сред, сероводородсодержащих сред; для мембран
Св. 350 до 610Для сварных узлов арматуры при отсутствии требования стойкости к межкристаллитной коррозии

Применение стали 12Х18Н10Т для крепежных деталей арматуры (ГОСТ 33260-2015)

Марка стали, по ГОСТ 1759.0Стандарт или технические условия на материалПараметры применения
Болты, шпильки, винтыГайкиПлоские шайбы
Темпера- тура среды, °СДавление номи- нальное Pn, МПа (кгс/см2)Темпера- тура среды, °СДавление номи- нальное Pn, МПа (кгс/см2)Темпера- тура среды, °СДавление номи- нальное Pn, МПа (кгс/см2)
12Х18Н10ТГОСТ 5632От -196 до 600Не регламен- тируетсяОт -196 до 600Не регламен- тируетсяОт -196 до 600Не регламен- тируется

Применение стали 12Х18Н10Т для изготовления шпинделей и штоков (ГОСТ 33260-2015)

Марка сталиНД на поставкуТемпература рабочей среды, °СДополнительные указания по применению
12Х18Н10Т ГОСТ 5632Сортовой прокат ГОСТ 5949От -270 до 350Применяется для работы в агрессивных средах: азотной кислоте, щелочах, аммиачной селитре, пищевых средах, средах спецтехники, судпрома, криогенной техники и сероводородсодержащих средах. Применяется для сварных узлов
Сортовой прокат ГОСТ 5949Св. 350 до 610Применяется для работы в средах, не вызывающих межкристаллитной коррозии

Применение стали 12Х18Н10Т для сильфонов (ГОСТ 33260-2015)

Марка сталиНД на поставкуНД на изготовление сильфоновТемпература рабочей среды, °СДавление рабочее Pp, МПа(кгс/см2), не болееДополнительные указания по применению
12Х18Н10Т ГОСТ 5632Лист ГОСТ 5582. Лента ГОСТ 4986, (для стали 1.4541)ГОСТ 21744, ГОСТ 22388От -260 до 550От 0,6 до 25,0 (от 6 до 250)Для воды, пара, инертных газов и для криогенных температур. Для сред слабой агрессивности — до температуры 350°С. Для коррозионных сред — до 150°С
Труба ГОСТ 10498От -260 до 465От 0,15 до 3,10 (от 1,5 до 31,0)

ПРИМЕЧАНИЕ В таблице указаны предельные величины по температурам и рабочим давлениям. Конкретные сочетания параметров применения (рабочее давление, осевой ход, температура и полный назначенный ресурс) приведены в нормативной документации на сильфоны.

Применение стали 12Х18Н10Т для узла затвора арматуры

Марка сталиТемпература рабочей среды, °СТвердостьДополнительные указания по применению
12Х18Н10Т ГОСТ 5632От -100 до 300155…170 HBРаботоспособность узла затвора обеспечивается при наличии наплавки или другого износостойкого покрытия в ответной детали

Применение стали 12Х18Н10Т для винтовых цилиндрических пружин

Марка сталиНД на поставкуТемпература применения, °СДополнительные указания по применению
12Х18Н10Т ГОСТ 5632ПроволокаОт -253 до 400Предохранительные, регулирующие клапаны, маломагнитные пружины

Применение стали 12Х18Н10Т для прокладок

Марка сталиВид полуфабрикатаТемпература применения, °СДополнительные указания по применению
НаименованиеНД на поставку
12Х18Н10Т ГОСТ 5632Листы толстые термически обработанныеГОСТ 7350От -253 до 600Применяется для работы в коррозионных средах

Стойкость стали 12Х18Н10Т к сульфидному коррозионному растрескиванию

Метод формообразования заготовокНаименование деталей
Поковки, штамповки, заготовки из прокатаКорпус, крышка, шток, шпиндель, детали уплотнения затвора, концевые детали сильфона

Максимально допустимые температура применения стали 12Х18Н10Т в средах, содержащих аммиак

Марка сталиТемпература применения сталей, °С при парциальном давлении аммиака, МПа (кгс/см )
Св. 1(10) до 2(20)Св. 2(20) до 5(50)Св. 5(50) до 8(80)
12Х18Н10Т540540540

Максимально допустимые температура применения стали 12Х18Н10Т в водородосодержащих средах

Марка сталиТемпература, °С, при парциальном давлении водорода, PH2, МПа (кгс/см2)
1,5(15)2,5(25)5(50)10(100)20(200)30(300)40(400)
12Х18Н10Т510510510510510510510

ПРИМЕЧАНИЕ

  • Параметры применения сталей, указанные в таблице, относятся также к сварным соединениям.
  • Парциальное давление водорода рассчитывается по формуле: PH2 = (C*Pp)/100, где C — процентное содержание в системе; PH2 — парциальное давление водорода; Pp — рабочее давление в системе.

Коэффициент относительной эрозионной стойкости деталей арматуры из стали 12Х18Н10Т

Детали проточной части арматурыМатериал деталейКоэффициент эрозионной стойкости относительно стали 12X18H10TМаксимальный перепад давления, при котором отсутствует эрозионный износ, МПа
Корпус, патрубки, шток, плунжер (шибер), седло12Х18Н10Т1,04,0

ПРИМЕЧАНИЕ

  1. Коэффициент эрозионной стойкости материала представляет собой отношение скорости эрозионного износа материала к скорости эрозионного износа стали 12Х18Н10Т (принятой за 1).
  2. Материалы являются эрозионностойкими, если коэффициент относительной эрозионной стойкости Kn не менее 0,5 и твердость материала HRC≥28.

Стойкость стали 12Х18Н10Т против щелевой эрозии

Группа стойкостиБаллЭрозионная стойкость по отношению к стали 12X18H10T
Стойкие20,75-1,5

Стойкость стали 12Х18Н10Т против ударной эрозии

Балл стойкостиНВ не болееМатериалы
5150Аустенитная хромоникелевая нержавеющая сталь марки 12Х18Н10Т

Применение стали 12Х18Н10Т для изготовления основных деталей арматуры атомных станций

Марка сталиВид полуфабриката или изделияМаксимально допустимая температура применения, °С
12Х18Н10Т ГОСТ 5632, ГОСТ 24030Листы, трубы, поковки, сортовой прокат. Крепеж600

Характеристики

Плотность ρ при температуре испытаний, 20 °С — 7900 кг/см3

Коэффициент теплопроводности λ Вт/(м*К) при температуре испытаний, °С

Сталь20100200300400500600700800900
12Х18Н10Т151618192123252726

Удельное электросопротивление ρ, нОм*м, при температуре испытаний °С —

Сталь20100200300400500600700800900
12Х18Н10Т725792861920976102810751115

Удельная теплоемкость c, Дж/(кг*К), при температуре испытаний, °С

20-10020-20020-30020-40020-50020-60020-70020-80020-90020-1000
462496517538550563575596

Коэффициент теплопроводности λ, Вт/(м*К), при температуре испытаний, °С

20100200300400500600700800900
151618192123252726

Коэффициент линейного расширения α*106, К-1, при температуре испытаний, °С

20-10020-20020-30020-40020-50020-60020-70020-80020-90020-1000
16,617,017,217,517,918,218,618,919,3

Модуль нормальной упругости Е, ГПа, при температуре испытаний °С

Сталь20100200300400500600700800900
12Х18Н10Т198194189181174166157147

Модуль упругости при сдвиге на кручением G, ГПа, при температуре испытаний °С

Сталь20100200300400500600700800900
12Х18Н10Т777471676359575449

Механические свойства

ГОСТСостояние поставкиСечение, ммσ0,2, МПаσb, МПаδ5, %ψ%
не менее
ГОСТ 5949-75Пруток. Закалка с 1020-1100 °С на воздухе, в масле или в воде601965104055
ГОСТ 18907-73Пруток шлифованный, обработанный на заданную прочность590-83020
Пруток нагартованныйДо 5930
ГОСТ 7350-77 (образцы поперечные)Лист горячекатаный и холодно-катаный:
закалка с 1000-1080 °С в воде или на воздухеСв.423653038
ГОСТ 5582-75(образцы поперечные)закалка с 1050-1080 °С в воде или на воздухеДо 3,920553040
нагартованныйДо 3,9880-108010
ГОСТ 25054-81Поковка. Закалка с 1050— 1100 °С в воде или на воздухеДо 10001965103540
ГОСТ 18143-72Проволока термообработанная1,0-6,0540-88020
ГОСТ 9940-81Труба бесшовная горячедеформированная без термообработки3,5-3252940

Механические свойства при повышенных температурах

tисп, °Сσ0,2, МПаσa, МПаδ5, %ψ%KCU, Дж/см2
20225-315550-65046-7466-80215-372
500135-205390-44030-4260-70196-353
550135-205380-45031-4161-68215-353
600120-205340-41028-3851-74196-358
650120-195270-39027-3752-73245-353
700120-195265-36020-3840-70255-353

Примечание.

Закалка с 1050—1100 °С на воздухе.

Механические свойства при испытании на длительную прочность (ГОСТ 5949-75)

tисп, °СПредел ползучести, МПа, не менееСкорость ползучести, %/ч
600741/100000
65029-39
tисп, °СПредел длительной прочности, МПа, не менееτ, ч
60014710000
65078-98

Ударная вязкость KCU

Состояние поставкиKCU, Дж/см2, при температуре, °С
+20-40-75
Полоса 8×40 мм286303319

Примечание.

Предел выносливости σ-1 = 279 МПа при n = 107.

Чувствительность к охрупчиванию при старении

Время, чТемпература, °СKCU, Дж/см2
Исх. сост.Исх. сост.274
5000600186-206
5000650176-196

Жаростойкость

СредаТемпература, °СГруппа стойкости или балл
Воздух6502-3
7504-5

Узнать еще

Сталь 38ХА конструкционная легированная…

Сталь 15ХСНД низколегированная конструкционная…

Сталь Ст0 — углеродистая обыкновенного качес…

Сталь 20Х23Н18 жаростойкая, жаропрочная, нержавеющ…

Плотность нержавеющей стали

Припой для нержавеющей стали

Плотность вещества вычисляется путем деления массы объекта на его объем. Такие вычисления для всех известных человеку веществ уже сделаны, и метрологические службы периодически повторяют и уточняют эти измерения. На практике перед людьми встает другая практическая задача: зная материал, из которого изготовлено изделие, определить его массу.

Плотность вещества также называют удельной массой (или, в быту, удельным весом) — т. е. массой сплошного физического тела изготовленного из данного вещества и имеющего единичный объем.

Нержавеющая сталь

Следует отметить, что, используя термин «масса», в 99% случаев люди имеют дело с весом — силой притяжения физического тела к Земле. Дело в том, что для определения массы тела в строгом физическом смысле требуется сложное оборудование, доступное лишь в крупнейших научных центрах. Для практического применения в большинстве случаев достаточно обычных, более или менее точных весов, использующих гравитацию Земли и пружины, либо рычаги и стандартные гири, либо пьезоэлементы.

На практике, чтобы рассчитать вес погонного или квадратного метра металлопроката используют удельную массу, или плотность материала, из которого он изготовлен. В справочниках по сортаменту металлопроката среди основных характеристик каждого сорта обязательно указывается масса погонного или квадратного метра и значение плотности, использованное при вычислениях.

Однако нужно понимать, что данные в справочнике рассчитываются на основании стандартной плотности стали, чаще всего это 7,85 т/м3. В то же время фактическая плотность стали конкретной марки зависит от состава и удельного количества присадок и может колебаться от 7,6 до 8,8 т/м3.

Это может дать погрешность до 10% в большую или в меньшую сторону для изделия, сделанного из очень легкого или, наоборот, очень тяжелого сплаваю. Для малого количества металла разница будет мала, и ею можно будет пренебречь. Однако для сложных изделий, использующих большие объемы металла, потребуются более точные расчеты.

https://youtube.com/watch?v=eN9Y_AqExdI

Масса понадобится при формировании заявки на закупку металла. На основе плотности данного сплава делают корректировку справочных значений массы одного погонного или квадратного метра, и далее в расчетах используют уже уточненное значение.

Коэффициент при сварке из нержавеющей стали

Прошу Вас рассмотреть вопрос и дать разъяснения по применению коэффициента -1,15 согласно п. 4.3.2 МДС 81-37.2004 и п. 4.9 МДС 81-35.2004 «Для оборудования, изготовленного из нержавеющей стали, когда в процессе его монтажа имеет место сварка» к расценкам ФЕРм 13-02-004-1÷7»Баки из коррозионностойкой и углеродистой стали, поставляемые в собранном виде».

Проектный институт считает применение К=1,15 (п. 4.3.2 МДС 81-37.2004, п.4.9 МДС 81-35.2004) к расценкам ФЕРм13-02-004-1÷7 «Баки из коррозионностойкой и углеродистой стачи, поставляемые в собранном виде» необоснованным, т.к. данные позиции являются комплексными и усреднены по материалу баков. Кроме того, в локальных сметах на монтаж баков из коррозионностойкой стали дополнительно учитываются сварочные материалы, необходимые для монтажа оборудования, согласно проектным данным.

Со своей стороны правомерность применения данного коэффициента обосновываем абз. 1 п. 4.3.2. МДС 81-37.2004, ресурсной частью расценок ФЕРм 13-02-004-1÷7, табл.1 и 3 разд. №2 ПНАЭ Г-7-009-89.

Несмотря на то, что название таблицы сборника ФЕРм 13-02-04 «Баки из коррозионностойкой и углеродистой стали, поставляемые в собранном виде» в расценках не указано разграничение по материалам, из которого изготовлены монтируемые баки. Также в Технической части к отделу 2 Сборника ФЕРм № 13 не указана усредненностъ расценки по материачам, из которых изготовлены монтируемые конструкции. Согласно абз. 1 п. 4.3.2. МДС 81-37.2004 «В тех случаях, когда в технической характеристике оборудования не указан материач, из которого оно изготовлено, в Сборниках ФЕРм принято, что оборудование изготовлено из углеродистой стали или серого чугуна».

Обоснованность ссылки на абз. 1 п. 4.3.2. МДС 81-37.2004 подтверждается ресурсным составом расценок ФЕРм 13-02-004-1 п. 4.97, где в качестве основной монтажной операции, с помощью которой конструкция (бак) фиксируется в проектном положении, является сварка, основными сварочными материалами в расценках ФЕРм 13-02-004-1÷7 — электроды УОНИ13/45.

Сварочные материалы к расценкам ФЕРм 13-02-004-1÷7

РасценкаЭлектродыСварочная проволока
НаименованиеНаименование
ФЕРм 13-02-004-1УОНИ 13/45
ФЕРм 13-02-004-2УОНИ 13/45
ФЕРм 13-02-004-3УОНИ 13/45
ФЕРм 13-02-004-4УОНИ 13/45
ФЕРм 13-02-004-5УОНИ 13/45
ФЕРм 13-02-004-6УОНИ 13/45
ФЕРм 13-02-004-7УОНИ 13/45

Согласно ПНАЭ Г-7-009-89 «Оборудование и трубопроводы атомных энергетических установок. Сварка и наплавка» (раздел 2 «Сварочные материалы», табл. 1) включенные в расценки ФЕРм 13-02-004-1÷7 сварочные материалы применяются для сварки материалов перлитного класса и не используются для сварки сталей аустенитного класса (табл. 3 ПНАЭ Г-7-009-89).

Исходя из вышеприведенных фактов, считаем, что в расценках ФЕРм 13-02-004-1÷7 таблицы «Баки из коррозионностойкой и углеродистой стали, поставляемые в собранном виде» отражена технология монтажа баков из углеродистой стали. В том случае, когда, согласно проекту, приходится монтировать конструкции из нержавеющей стали, к расценкам ФЕРм 13-02-004-1÷7 необходимо применять коэффициент 1,15 согласно п.п. 4.3.2 МДС 81-37.2004 и 4.9 МДС 81-35.2004.

Ответ

Нормы таблицы ГЭСНм 13-02-004 «Баки» Сборника на монтаж оборудования № 13 «Оборудование атомных электрических станций» разработаны на оборудование из углеродистой и коррозионностойкой стали с учётом усреднённой типовой технологии монтажа на баки определённой вместимости в м3 (0,1;0, 5; 10; 16 и 40), на измеритель 1 т.

Нормативы на монтаж баков, разработанные по усреднённой технологии монтажа, объединены в одну норму и расценку, исходя из того, что затраты при пересчёте на 1 т монтажа баков из коррозионно- стойкой и углеродистой стали имели близкие показатели.

Отмечается, что показатели объединённых нормативов в Сборнике приведены с учётом технологии монтажа баков из углеродистой стали, о чём свидетельствует наличие электродов УОНИ 13/45 перлитного класса. Предполагалось, что при использовании нормативов затраты на монтаж баков компенсируются массой, учитывая, что масса баков из коррозионностойкой стали выше, чем баков из углеродистой стали.

Практика объединения расценок с близкими показателями в одну расценку была принята при разработке сметно-нормативной базы 1991 года в СНиП 4.06-91. Установленный порядок по объединению нормативов перенесён и в сметно-нормативную базу 2001 года.

Однако объединение баков из коррозионностойкой и углеродистой стали в одну норму и расценку не совсем корректно и требует, по нашему мнению, корректировки. Такой вывод сделан после анализа данных, приведенных в новом строительном справочнике «Газоэлектросварщик», Ростов-на-Дону 2007 г., (Строительство и дизайн) при сопоставлении показателей скорости сварки из следующих таблиц:

«Ориентировочные режимы сварки стыковых соединений листов из углеродистой и низколегированной стали (табл. 9) и нержавеющей стали (табл. 12). Данные приводятся при работе на постоянном и переменном токе, при различной толщине свариваемых листов:

  • в зависимости от вида тока при толщине 1 мм показатели скорости сварки отличаются в 1,95 раз; при толщине 1,2÷2 мм — в 2,72 раза;
  • при переменном токе при толщине 1,5 мм — в 2,3 раза».

Сопоставление показало, что средняя скорость сварки листов из углеродистой стали по сравнению с нержавеющей (коррозионностойкой) выше, в связи с чем при сварке листов из нержавеющей стали количество маш.-ч сварочного аппарата и трудозатраты рабочего, обслуживающего сварочный аппарат, должны быть изменены в сторону увеличения.

Принимая во внимание показатель изменения скорости сварки на нержавеющей стали — 2,3 при переменном токе:

  • в ГЭСНм 13-02-04-5, с количеством маш.-ч на сварку на монтаже баков из углеродистой стали — 4,7 маш.-ч, и общим количеством трудозатрат — 59 чел.-ч., увеличение времени работы на сварку листов из нержавеющей стали составляет 4,7 х 2,3 — 4,7 = 6,11 час, что составляет увеличение к общим трудозатратам на 10,4% (6,11/59);.
  • по ГЭСНм 13-02-04-6 количество маш.-ч на сварку при монтаже баков из углеродистой стали составляет 4,69, маш.-ч, общее количество трудозатрат — 45 чел.ч. Увеличение времени работы на сварку листов из нержавеющей стали составляет 4,69 х 2,3 — 4,69 = 6,1 час, что составляет увеличение к общим трудозатратам на 13,5% (6,1/45);
  • по ГЭСНм 13-02-04-7 количество маш.-ч на сварку листов при монтаже баков из углеродистой стали составляет 4,13 маш.-ч, общее количество трудозатрат 26 чел.ч. Увеличение времени работы на сварку листов из нержавеющей стали составляет 4,13 х 2,3 — 4,13 = 5,37 час, что составляет увеличение к общим трудозатратам 20,7% (5,37:26).

Анализ затрат на монтаж баков из стали коррозионностойкой и углеродистой показывает, что объединению в одну позицию подлежали нормативы на баки только небольшой вместимости. Установленный порядок не следовало распространять на баки вместимостью 10 м3, 16 м3 и 40 м3, в которых сварочные работы имеют значительный объём по сравнению с баками небольшой вместимости.

Рекомендуем для решения вопроса о правильности учёта затрат на монтаж баков из коррозионно- стойкой стали, по согласованию с Заказчиком, использовать нормативы ГЭСНм 13-02-004-5,6,7 с применением коэффициента 1,15 на нержавеющую сталь к затратам труда и оплате труда рабочих — монтажников, предусмотренных в составе единичных расценок, согласно п. 4.3.2 МДС 81-37.2004 «Указаний по применению федеральных единичных расценок на монтаж оборудования».

Что касается электродов УОНИ 13/45 перлитного класса, то при монтаже баков из коррозионностойкой стали они подлежат замене и необходимой компенсации, если затраты на требуемые электроды не покрывают лимита средств, предусмотренного нормативами.

Марка пищевой нержавеющей стали

Маркировка нержавеющей стали

Нержавеющие стали в настоящее время считаются практически незаменимым материалом для создания пищевого оборудования. Марки нержавейки, допущенные к контакту с пищевой продукцией, определялись в основном по опыту винодельческих производств, которые ведутся с применением наиболее коррозионно-активных процессов и технологий. В результате выяснилось, что при выборе марки пищевой нержавейки следует учитывать длительность ее контакта с пищевым продуктом. Чем дольше контакт, тем более высокая коррозионная устойчивость потребуется.

В настоящее время получила широкое применение нержавеющая сталь для пищевой промышленности марок AISI 304, AISI 304L, AISI 430, AISI316, AISI 316L, AISI 316Ti, AISI 321. Все они являются легированными нержавеющими сталями. Если вам нужна нержавейка пищевая, марка может быть любой из этого списка, однако следует знать, что AISI 304, AISI 430, AISI 316 не содержат в своем составе стабилизирующего титана. Это снижает их коррозионную стойкость и делает чувствительными к механическим, термическим и химическим воздействиям. Их можно использовать для недолгого контакта с пищевыми продуктами в щадящих условиях эксплуатации.

Особенности нержавеющей стали для пищевой промышленности

Производители продуктов питания активнее всего используют трубы из нержавейки. Они должны соответствовать требованиям стандарта DIN 11850, который определяет состав стали и качество сварного шва. Трубы из нержавейки полностью отвечают повышенным требованиям, гигиены и экологичности материалов, применяемых в производстве оборудования для пищевой промышленности и сферы общественного питания. Их изготавливают из сталей AISI 304 и AISI 316L, которые проявляют следующие свойства:

  • высокая коррозийная устойчивость по всей длине трубы и на участках сварных соединений;
  • устойчивость к химически агрессивным средам;
  • износостойкость;
  • экологическая безопасность и нетоксичность;
  • соответствие стандартам миграции (растворения) тяжелых металлов в рабочей среде;
  • сохранение параметров гладкости в течение всего срока эксплуатации, что облегчает чистку и обслуживание оборудования.

В пищевых производствах для мойки оборудования часто используют горячие растворы сульфаминовой кислоты или каустической соды. В этих условиях лучше выбирать более устойчивую к агрессивным средам нержавейку AISI 316. Для бытовых условий и общепита, где металл не взаимодействует с подобными растворами, можно использовать AISI 304 и более дешевые AISI 430, AISI 410.

Ниже для наглядности представлены типы нержавеющих сталей по AISI, используемых в пищевом производстве, их соответствие другим стандартам, включая российский, а также допустимая применимость нержавейки в различных средах.

Таблица 1. 1.

Переводы международных стандартов для обозначения основных сталей, применяемых в пищевом производстве.

Таблица 1. 2.

(продолжение) Переводы международных стандартов для обозначения основных сталей, применяемых в пищевом производстве

Таблица 2.

Применимость нержавеющих сталей по AISI. Коррозионная стойкость сталей по AISI в различных применениях

Цена

Если вам требуется пищевая нержавейка, цена на нее будет определяться наличием в составе дорогих легирующих компонентов

Также важно качество обработки поверхности выбранных изделий. Оборудование для пищевой промышленности предъявляет более высокие требования к нержавейке, которая используется в более агрессивных условиях, а в случае коррозии может нанести вред огромным объемам продукции

В быту и общепите может использоваться дешевая пищевая нержавейка.

Как определить пищевую нержавейку?

Чтобы определить состав нержавеющей стали пищевой и ее пригодность по параметрам коррозионной устойчивости, можно воспользоваться справочником по маркам нержавейки. Если вы располагаете образцом нержавейки неизвестной марки, его пригодность можно проверить, поместив на два-три дня в двухпроцентный раствор уксуса или в рабочую среду. Сталь можно использовать, если образец не потемнеет.

Распространенное мнение о том, что пищевую нержавейку можно определить при помощи магнита, ошибочно. Среди марок пищевой нержавейки встречаются как намагничивающиеся, так и не намагничивающиеся стали. Чтобы определиться с выбором, не стесняйтесь проконсультироваться со специалистом компании, где собираетесь производить закупку нержавейки. Чем лучше вы представляете себе процессы пищевого производства, для которого вам нужна нержавеющая сталь, тем больше у вас шансов сделать правильный выбор.

Нержавейка 12х18н10т характеристики

Эта нержавеющая сталь 12х18н10т характеристики имеет типичные для своего класса параметры. Они обусловлены присутствием легирующих добавок – никеля, хрома, карбидов титана и т.д. Благодаря никелю, материал переходит в аустенитный класс. Хром необходим для пассивации, а также обеспечивает надёжную защиту от коррозионного разрушения. Также следует отметить следующие свойства материала:

  • Отличная свариваемость;
  • Устойчивость к воздействию щелочных, кислотных и солевых растворов, других агрессивных сред;
  • Механическая прочность, обеспеченная присутствием кремния (до 0,8%);
  • Защищенность от межкристаллитного разрушения материала. Эту особенность создаёт титан,

В отношении этого материала действует ряд стандартов. В частности, 5632-72 – гост на нержавеющую сталь 12х18н10т и другие сплавы, описывающие теплопроводность, устойчивость к коррозии, термическому и химическому воздействию. Производство тонких и толстых типов листового проката этой марки регламентируется ГОСТами 7350-77 и 5582-75.

Основные характеристики и свойства

При выборе металла уделяется много внимания основным характеристикам. К ним отнесем:

  1. Показатель твердости. Он может варьировать в большом диапазоне и зависеть от того, была ли проведена термическая обработка. Твердость стали 20 выдерживается на уровне 163 МПа. Этого вполне достаточно для изготовления различных изделий, которые обладают высокой износостойкостью.
  2. Также учитывается и плотность. Менее плотные материалы применяются для изготовления изделий, которые будут обладать небольшим весом. В рассматриваемом случае показатель составляет 7,85 к/см3.
  3. Рассматривая основные характеристики учитывается предел текучести и предел прочности. Они рассматриваются при создании различных проектов. Металл Ст 20 может улучшаться для того, чтобы увеличить характеристики материала.
  4. Структура характеризуется тем, что не склонна к отпускной хрупкости и образованию флокенов.
  5. Проводимая термообработка стали 20 позволяет существенно увеличить срок службы изделия. Проводится она при определенных режимах. К примеру, для ковки структура нагревается до температуры 1 280 градусов Цельсия.
  6. При необходимости есть возможность проводить сваривание деталей.
  7. Ударная вязкость стали 20 определяет то, что металл часто применяется при изготовлении валов и других подобных изделий, которые могут использоваться при создании элементов, применяемых при создании различных механизмов. Модуль упругости также учитывается при рассмотрении основных свойств металла.
  8. Средний коэффициент теплопроводности определяет то, что структура может нагреваться достаточно быстро, но при этом тепло отводится с высокой эффективностью.

Свойства Ст 20

Механические свойства стали 20 определяют довольно широкое распространение этой марки в машиностроительной и других область промышленности. Как ранее было отмечено, технические характеристики могут улучшаться при проведении термической обработки или легировании. Перестроение структуры металла позволяет повысить твердость поверхностного слоя, при добавлении других химических веществ могут придаваться особые качества, к примеру, коррозионная стойкость.

Термическая обработка предусматривает изменение структуры за счет оказания воздействия определенной температуры. Критические точки выбираются в зависимости от особенностей химического состава. К особенностям подобной процедуры отнесем следующие моменты:

Для оказания требуемого воздействия применяется специальное оборудование. Примером можно назвать доменные и индукционные печи. На протяжении длительного периода использовали именно доменные печи, но они уступают индукционным. Второй вариант исполнения подходит для установки в небольших мастерских. Критические точки учитываются при проведении рассматриваемой процедуры. Стоит учитывать, что они уже были выявлены для всех металлов, поэтому не нужно проводить исследования повторно. Заготовка разогревается до требуемой температуры, после чего происходит первичное перестроение структуры

Время выдержки также является важным показателем, который должен учитываться, как и скорость нагрева. Уделяется внимание и процессу охлаждения. Слишком большие заготовки охлаждаются на воздухе, так как возникают проблемы с созданием требующейся среды

На протяжении длительного периода охлаждение проводилось в воде, но это приводило к появлению окалины. Обеспечить более высокое качество термической обработки возможно за счет применения масла в качестве охлаждающей среды. Однако, при охлаждении в масле следует учитывать высокую вероятность образования токсичного дыма и воспламенения поверхности от высокой температуры.

Цвета закалки стали

Во многих случаях после термической обработки образуются поверхностные дефекты. Именно поэтому процедура применяется для заготовок или изделий, которые созданы с учетом припуска. После закалки часто проводится отпуск, который позволяет снять внутренние напряжения и снизить вероятность повреждения изделия при падении или возникновении ударной нагрузки.

Применение

Широкое применение сталь СТ 20 получила в различных отраслях промышленности

  • Машиностроение. Стальные элементы используются в качестве получения шестерней, муфт соединительного характера и элементов червячных пар. Из них получаются первоклассные приспособления для крепежа, а также соединительные детали в виде валов и кронштейнов.
  • Трубопроводная отрасль по изготовлению арматуры.
  • Строительство. Благодаря ряду ценных характеристик данного вида стали, ее применяют для производства металлоконструкций.

Важно. Прекрасная характеристики крепления во время спаивания, невысокая стоимость и невероятная прочность делают доступным использование стальных элементов в работе несущих конструкций в виде ферм, перекладин поперечного вида и стоек

Отлично получаются крепежные детали и элементы подобного характера (гайки, болты и прочие подобные детали).

Удельный вес металлов

Все тела, имеющие одинаковый объем, но произведенные из различных веществ, имеют различную массу, которая находится в прямой зависимости от его объема. Отношение объема сплава к его массе — плотность — является постоянной величиной, которая будет характерной для данного вещества. А удельный вес — это сила тяжести непосредственно взятого за основу объема данного вещества. Другими словами, удельным весом металла называется вес единицы объема безусловного плотного (непористого) материала. Для обозначения удельного веса следует массу сухого материала поделить на его объем в полностью плотном состоянии. Все известные и применяемые в промышленности металлы обладают определенными физико-механическими свойствами, которые, собственно говоря, и определяют их удельный вес. Металлы обладают характерными свойствами, среди которых можно назвать высокую прочность, тепло- и электропроводность, пластичность. Химические свойства и удельный вес цветных металлов

Наименование цветного металлаХимическое обозначениеАтомный весТемпература плавления, °CУдельный вес, г/куб.см
Цинк (Zinc)Zn65,37419,57,13
Алюминий (Aluminium)Al26,98156592,69808
Свинец (Lead)Pb207,19327,411,337
Олово (Tin)Sn118,69231,97,29
Медь (Сopper)Cu63,5410838,93
Титан (Titanium)Ti47,9016684,505
Никель (Nickel)Ni58,7114558,91
Магний (Magnesium)Mg246501,74
Ванадий (Vanadium)V619006,11
Вольфрам (Wolframium)W184342219,3
Хром (Chromium)Cr51,99617657,19
Молибден (Molybdaenum)Mo92262210,22
Серебро (Argentum)Ag107,9100010,5
Тантал (Tantal)Ta180326916,65
Золото (Aurum)Au197109519,32
Платина (Platina)Pt194,8176021,45

Удельный вес наиболее распространенных марок стали

Наименование (тип стали)Марка или обозначениеУдельный вес (г/см 3 )
Сталь нержавеющая конструкционная криогенная12Х18Н10Т7,9
Сталь нержавеющая коррозионно-стойкая жаропрочная08Х18Н10Т7,9
Сталь конструкционная низколегированная09Г2С7,85
Сталь конструкционная углеродистая качественная10,20,30,407,85
Сталь конструкционная углеродистаяСт3сп, Ст3пс7,87
Сталь инструментальная штамповаяХ12МФ7,7
Сталь конструкционная рессорно-пружинная65Г7,85
Сталь инструментальная штамповая5ХНМ7,8
Сталь конструкционная легированная30ХГСА7,85

Удельный вес стали различных марок

Наименование (тип стали)Марка или обозначениеУдельный вес (г/см 3 )
никельхромовая стальЭИ 4188,51
хромомарганцовоникелевая стальХ13Н4Г9 (ЭИ100)8,5
хромистая сталь1Х13 (ЭЖ1)7,75
2Х13 (ЭЖ2)7,70
3Х13 (ЭЖ3)7,70
4Х14 (ЭЖ4)7,70
Х17 (ЭЖ17)7,70
Х18 (ЭИ229)7,75
Х25 (ЭИ181)7,55
Х27 (Ж27)7,55
Х28 (ЭЖ27)7,85
хромоникелевая сталь0Х18Н9 (ЭЯ0)7,85
1Х18Н9 (ЭЯ1)7,85
2Х18Н9 (ЭЯ2)7,85
Х17Н2 (ЭИ268)7,75
ЭИ3077,7
ЭИ3348,4
Х23Н18 (ЭИ417)7,9
хромокремнемолибденовая стальЭИ1077,62
хромоникельвольфрамовая стальЭИ698,0
хромоникельвольфрамовая с кремнием стальХ25Н20С2 (ЭИ283)8,0
хромоникелькремнистая стальЭИ727,7
прочая особая стальЭИ4017,9
ЭИ4188,51
ЭИ4348,13
ЭИ4358,51
ЭИ4378,20
ЭИ4157,85

Удельный вес стали углеродистой и легированной

Удельная плотность: таблица соответствия веса

Для того, чтобы вам было все понятно приводим к примеру таблицу с популярными марками нержавеющих стальных изделий с характеристиками.

Название изделия, типМаркировка, или что оно означаетВес (г/см3)
Нержавеющие конструкционные криогенные стальные12 на 188
Нержавеющая стальная конструкция, стойкая к коррозиям и прочная к высоким температурам08 на 188
Низколегированные стальные конструктивные09 на 27,89
Стальные конструкционные качественные углеродистые10-407,89
Конструкционные углеродистые стальныеСт3 сп, 3 пс7,85
Штамповые инструментальныеХ 12 мф7,8
Конструкционные рессорно-пружинные65 г7,9
Инструментальны штамповые5 х7,75
Конструктивные легированные30 хг7,89

Совет: чтобы удельный вес был точным, обратитесь за помощью к специалистам, которые быстро решат за вас все вопросы.

Электросварные профильные трубы ГОСТ 11068-81

  1. Подают жидкости, газы, отопление, для работ на стройке.
  2. В нефтевом и газовом производстве, для насоса химических производств. Для таких согласно ГОСТу 10704 91.
  3. В производствах, где необходима устойчивость к перепадам давлений и высоких температурных режимов. Применяют и оцинкованные овальные трубы с широкой плотностью и не большим диаметром.
  4. В области геологических разведок на месте нефтяных скважин.
  5. Строение вагонов, машин, в изготовлении оборудования для стройки и ремонта. Здесь широко применяют изделия с тонкими стенками и длиной не более .
  6. Для машиностроения.

Бесшовные горячедеформированные ГОСТ 9940-81

ГОСТ 11068 81- это не только выше перечисленные параметры и характеристики, чтобы вычислить плотность стали, и вес нержавеющей трубы найдите в книгах или на страницах интернет-сайтов полный список стандартных и нестандартных изделий.

Что касается длины, то они бывают немерными, но не выше чем в предоставленной таблице ГОСТов, допустимое отклонение 1,5 см. Если заказчик договаривается с производителями, предусматривается превышение длины изготовленной трубы по размерам больше, чем указано.

Конец каждого изделия обрезается согласно прямому углу и зачищается от сколов, могут присутствовать маленькие фаски. При договоренности потребителя с заказчиком наносятся на концы труб специальные фаски, позволяющие произвести сварку нескольких изделий между собой.

Каждая труба горячего деформирования изготавливается согласно ГОСТам и стандартам, соблюдаются все требования, которые прописаны в техническом регламенте, и утверждены установленным порядком. Для производственных целей берет только те марки сталей, которые указаны в таблице, не используют металлы с химическими добавками.

Наружная и внешняя поверхность бесшовного горячедеформированного изделия проходит испытание температурой, выдерживает больше 350 С, и только после этого отправляется на продажу. Если на поверхности заметна плена, закат, трещина или рваное место с дефектами, она идет на повторную переработку с устранением всех повреждений. Диаметры и толщина стенок труб должна соответствовать ГОСТ 11068 81.

Как вычислить с помощью формул вес нержавеющей трубы 12 х 18н 10т: погонный метр материала размером 1 метр

Имея необходимое количество данных, мы сможем быстро и без затруднений вычислить вес нержавеющей стали.

Он равняется объемному весу стали и плотности. Для выяснения приблизительного объема умножьте площадь нержавеющей трубы на поверхности, равной диаметру и толщине стенок. Например:

  1. Берем трубы из стали, диаметр стенки которых равен 100 миллиметрам;
  2. Длина их 10 000 миллиметров;
  3. Удельная плотность стали 7900
  4. 7900*100 мм*число П 3,14* 10 000 мм=24,8 кг.

Все параметры труб прописаны в ГОСТе
Как показывают практические измерения, такой расчет веса трубы не является точным на 100%, так, как на круглой поверхности могут быть корректировки. Используют формулу расчета веса немного проще:

Вес внешнего диаметра – толщину стены* толщину стены*25 г=1, что является весом, или же еще проще:

(Диаметр-толщина)*толщину стенки*25 г= . Совет: вычисляя по разным формулам, вы можете столкнуться с разными величинами, но разница в них будет маленькая, которой вполне можно пренебрегать. Лучше, чтобы вес нержавейки покупался с запасом, который потеряется на обработке или обрежется.

Популярные размеры профильных труб бывают:

  1. Длиной стороны 1,5 на 1,5 см, толщиной стенки 0,01, 0,015 и 0,02 см – вес 0,48 до0,91 кг/мм
  2. ДС 2 на 1,5 см – ТС 0,015 и 0,02 см, вес 0,9-1 кг/мм.
  3. ДС 2 на 2 см – ТС 0,01, 0,015 и 0,02 см – В 0,63-1,22 кг/мм.
  4. ДС 2,5 на 1,5 –ТС 0,01, 0,015 и 0,02 см – В 0,6-1,22 кг/мм.
  5. ДС 2,5 на 2,5 –ТС 0,01, 0,015 и 0,02 см – В 0,78-1,5 гк/мм.
  6. ДС 3 на 2 см – ТС 0,015 и 0,02 см – В 1,2-1,49 кг/мм.

Для более широкого понятия размерной сетки, где указывают длину каждой стороны, толщину стенок, рекомендуем ознакомиться на сайтах в интернете, где есть полный перечень величин.

ПОСМОТРЕТЬ ВИДЕО

Нержавеющая сталь представляет собой легированную сталь, устойчивую к коррозии в агрессивной среде и атмосфере. Данный тип стали делиться на три группы: коррозионностойкие, жаропрочные и жаростойкие. Эти группы специально разделены для решения определенных задач.

Так, коррозионностойкие стали применяются там, где необходима высокая стойкость материалов к коррозии, как в бытовых условиях, так и в промышленных работах. Жаростойкие стали применяются в ситуациях, когда необходима хорошая устойчивость материала к коррозии под воздействием высоких температур, например, на химических заводах. Жаропрочные стали — там, где необходима высокая прочность к механическому воздействию при высоких температурах.

При работе с нержавеющей сталью крайне важно знать показатель качества. Помочь определиться с этим параметром поможет такая характеристика, как удельный вес нержавеющей стали.

Механические и технологические характеристики стали

Очень тяжело определить конкретные физические и механические свойства стали, поскольку число ее видов разнообразно ввиду различного состава и термической обработки, которые позволяют создавать материалы с широким разнообразием химических и механических характеристик. Такое разнообразие привело к тому, что производство этих материалов и их обработку начали выделять в отдельную отрасль металлургии — черную металлургию, отличающуюся от цветной металлургии. Однако общие свойства для стали привести можно, они представлены в списке ниже.

  • Объемный вес стали, то есть масса 1 м³, составляет 7850 кг. Плотность стали г см3 составляет, таким образом, 7,85.
  • В зависимости от температуры материал можно гнуть, вытягивать и плавить.
  • Температура плавления зависит от типа сплава и процентного содержания добавок. Так, чистое железо плавится при температуре 1510 °C, в свою очередь, сталь имеет точку плавления, равную 1375 °C, которая увеличивается по мере увеличения процентного содержания углерода и других элементов в ней (исключение составляют эвтектики, плавящиеся при более низких температурах). Быстрорежущая сталь плавится при температуре 1650 °C.
  • Кипит материал при температуре 3000 °C.
  • Это стойкий к деформациям материал, твердость которого повышается при добавлении других элементов.
  • Обладает относительной ковкостью (с помощью него можно получать тонкие нити путем волочения — проволоку), а также пластичностью (можно получать плоские металлические листы толщиной 0,12—0,50 мм — жесть, которая обычно покрывается оловом для предотвращения окисления).
  • Перед использованием термического воздействия сплав проходит механическую обработку.
  • Некоторые композиты обладают памятью формы и деформируются на величину, превосходящую предел текучести.
  • Твердость стали варьируется между твердостью железа и твердостью структур, которые получаются с помощью термических и химических процессов. Среди них наиболее известной является закалка, применяемая к материалам с высоким содержанием углерода. Высокая поверхностная твердость стали позволяет ее использовать в качестве режущего инструмента. Для получения этой характеристики, которая сохраняется до высоких температур, в сталь добавляют хром, вольфрам, молибден и ванадий. Измеряют твердость металла по бринеллю, викерсу и роквеллу.
  • Обладает хорошими литейными свойствами.
  • Способность подвергаться коррозии является одним из основных недостатков стали, поскольку окисленное железо увеличивается в объеме и приводит к возникновению трещин на поверхности, что, в свою очередь, еще сильнее ускоряет процесс разрушения. Традиционно металл защищали от коррозии с помощью различных поверхностных обработок. Кроме того, некоторые составы стали устойчивы к окислению, например, нержавеющие материалы.
  • Обладает высокой электропроводностью, которая не сильно изменяется в зависимости от состава сплава. В воздушных линиях электропередач чаще всего используют алюминиевые проводники, которые покрываются стальной рубашкой. Последняя обеспечивает необходимую механическую прочность проводам, а также способствует более дешевому их производству.
  • Используется для производства искусственных постоянных магнитов, поскольку намагниченная сталь не теряет свою магнитную способность до определенной температуры. При этом структура стали феррит обладает магнитными свойствами, в то время как структура аустенит не является магнитной. Магниты на основе стали для стабилизации структуры феррита содержат, как правило, около 10% никеля и хрома.
  • С увеличением температуры изделие из этого материала увеличивает свою длину. Поэтому если в той или иной конструкции существуют степени свободы, то тепловое расширение не является проблемой, если же таких степеней свободы не существует, то расширение стали приведет к появлению дополнительных напряжений, которые нужно учитывать. Коэффициент теплового расширения стали близок к таковому для бетона. Этот факт делает возможным их совместное использование в конструкциях различного типа, такой материал получил название железобетон.
  • Это негорючий материал, однако его фундаментальные механические свойства быстро ухудшаются под воздействием открытого огня.

Теплопроводность нержавеющей стали

Теплопроводность представляет собой физическую величину, которая определяет способность материалов проводить тепло.
Иными словами, теплопроводность представляет собой способность субстанций передавать кинетическую энергию атомов и молекул другим субстанциям, находящиеся в непосредственном контакте с ними.

В СИ эта величина измеряется во Вт/(К*м) (Ватт на Кельвин-метр), что эквивалентно Дж/(с*м*К) (Джоуль на секунду-Кельвин-метр).

Понятие теплопроводности

Она является интенсивной физической величиной, то есть величиной, которая описывает свойство материи, не зависящей от количества последней.

Интенсивными величинами также являются температура, давление, электропроводность, то есть эти характеристики одинаковы в любой точке одного и того же вещества.

Другой группой физических величин являются экстенсивные, которые определяются количеством вещества, например, масса, объем, энергия и другие.

Противоположной величиной для теплопроводности является теплосопротивляемость, которая отражает способность материала препятствовать переносу проходящего через него тепла.

Для изотропного материала, то есть материала, свойства которого одинаковы во всех пространственных направлениях, теплопроводность является скалярной величиной и определяется, как отношение потока тепла через единичную площадь за единицу времени к градиенту температуры.

Так, теплопроводность, равная одному ватту на метр-Кельвин, означает, что тепловая энергия в один Джоуль переносится через материал:

  • за одну секунду;
  • через площадь один метр квадратный;
  • на расстояние один метр;
  • когда разница температур на поверхностях, находящихся на расстоянии один метр друг от друга в материале, равна один Кельвин.

Понятно, что чем больше значение теплопроводности, тем лучше материал проводит тепло, и наоборот.

Например, значение этой величины для меди равно 380 Вт/(м*К), и этот металл в 10 000 раз лучше переносит тепло, чем полиуретан, теплопроводность которого составляет 0,035 Вт/(м*К).

Перенос тепла на молекулярном уровне

Когда материя нагревается, увеличивается средняя кинетическая энергия составляющих ее частиц, то есть увеличивается уровень беспорядка, атомы и молекулы начинают более интенсивно и с большей амплитудой колебаться около своих равновесных положений в материале. Перенос тепла, который на макроскопическом уровне можно описать законом Фурье, на молекулярном уровне представляет собой обмен кинетической энергией между частицами (атомами и молекулами) вещества, без переноса последнего.

Это объяснение механизма теплопроводности на молекулярном уровне отличает его от механизма термической конвекции, при котором имеет место перенос тепла за счет переноса вещества.

Все твердые тела обладают способностью к теплопроводности, в то время как тепловая конвекция возможна только в жидкостях и газах.

Действительно, твердые вещества переносят тепло в основном за счет теплопроводности, а жидкости и газы, если есть температурные градиенты в них, переносят тепло в основном за счет процессов конвекции.

Теплопроводность материалов

Ярко выраженной способностью проводить тепло обладают металлы.

Для полимеров свойственна невысокая теплопроводность, а некоторые из них практически не проводят тепло, например, стекловолокно, такие материалы называются теплоизоляторами.

Чтобы существовал тот или иной поток тепла через пространство, необходимо наличие некоторой субстанции в этом пространстве, поэтому в открытом космосе (пустое пространство) теплопроводность равна нулю.

Каждый гомогенный (однородный) материал характеризуется коэффициентом теплопроводности (обозначается греческой буквой лямбда), то есть величиной, которая определяет, сколько тепла нужно передать через площадь 1 м², чтобы за одну секунду, пройдя через толщу материала в один метр, температура на его концах изменилась на 1 К. Это свойство присуще каждому материалу и изменяется в зависимости от его температуры, поэтому этот коэффициент измеряют, как правило, при комнатной температуре (300 К) для сравнения характеристики разных веществ.

Если материал является неоднородным, например, железобетон, тогда вводят понятие полезного коэффициента теплопроводности, который измеряется согласно коэффициентам однородных веществ, составляющих этот материал.

В таблице ниже приведены коэффициенты теплопроводности некоторых металлов и сплавов во Вт/(м*К) для температуры 300 К (27 °C):

  • сталь 47—58;
  • алюминий 237;
  • медь 372,1—385,2;
  • бронза 116—186;
  • цинк 106—140;
  • титан 21,9;
  • олово 64,0;
  • свинец 35,0;
  • железо 80,2;
  • латунь 81—116;
  • золото 308,2;
  • серебро 406,1—418,7.

В следующей таблице приведены данные для неметаллических твердых веществ:

  • стекловолокно 0,03—0,07;
  • стекло 0,6—1,0;
  • асбест 0,04;
  • дерево 0,13;
  • парафин 0,21;
  • кирпич 0,80;
  • алмаз 2300.

Из рассматриваемых данных видно, что теплопроводность металлов намного превышает таковую для неметаллов. Исключение составляет алмаз, который обладает коэффициентом теплопередачи в пять раз больше, чем медь.

Это свойство алмаза связано с сильными ковалентными связями между атомами углерода, которые образуют его кристаллическую решетку. Именно благодаря этому свойству человек чувствует холод при прикосновении к алмазу губами.

Свойство алмаза хорошо переносить тепловую энергию используется в микроэлектронике для отвода тепла из микросхем. А также это свойство используется в специальных приборах, позволяющих отличить настоящий алмаз от подделки.

В некоторых индустриальных процессах стараются увеличить способность передачи тепла, чего достигают либо за счет хороших проводников, либо за счет увеличения площади контакта между составляющими конструкции.

Примерами таких конструкций являются теплообменники и рассеиватели тепла.

В других же случаях, наоборот, стараются уменьшить теплопроводность, чего достигают за счет использования теплоизоляторов, пустот в конструкциях и снижения площади контакта элементов.

Коэффициенты теплопередачи сталей

Способность передавать тепло для сталей зависит от двух главных факторов: состава и температуры.

Простые углеродные стали при увеличении содержания углерода снижают свой удельный вес, в соответствии с которым также уменьшается и их способность переносить тепло от 54 до 36 Вт/(м*К) при изменении процента углерода в стали от 0,5 до 1,5%.

Нержавеющие стали содержат в своем составе хром (10% и больше), которые вместе с углеродом образует сложные карбиды, препятствующие окислению материала, а также повышает электродный потенциал металла.

Теплопроводность нержавейки невелика в сравнении с другими сталями и колеблется от 15 до 30 Вт/(м*К) в зависимости от ее состава.

Жаропрочные хромоникелевые стали обладают еще более низкими значениями этого коэффициента (11—19 Вт/(м*К).

Другим классом являются оцинкованные стали с удельным весом 7 850 кг/м3, которые получают путем нанесения покрытий на сталь, состоящих из железа и цинка.

Так как цинк легче проводит тепло, чем железо, то и теплопроводность оцинкованной стали будет относительно высокой в сравнении с другими классами стали.

Она колеблется от 47 до 58 Вт/(м*К).

Например, коэффициент теплопроводности стали 20 при увеличении температуры от комнатной до 1200 °C снижается от 86 до 30 Вт/(м*К), а для марки стали 08Х13 увеличение температуры от 100 до 900 °C не изменяет ее коэффициент теплопроводности (27—28 Вт/(м*К).

Факторы, влияющие на физическую величину

Способность проводить тепло зависит от ряда факторов, включая температуру, структуру и электрические свойства вещества.

Температура материала

Влияние температуры на способность проводить тепло различается для металлов и неметаллов. В металлах проводимость главным образом связана со свободными электронами.

Согласно закону Видемана—Франца теплопроводность металла пропорциональна произведению абсолютной температуры, выраженной в Кельвинах, на его электропроводность. В чистых металлах с увеличением температуры уменьшается электропроводность, поэтому теплопроводность остается приблизительно постоянной величиной.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями: