Приобретение мини-литейного завода – готовый бизнес с быстрым стартом


Литейные сплавы: об основных технологических свойствах

Первой среди них стоит жидкотекучесть. Это значит, что расплавленный материал растекается по каналам литейной формы, заполняет контуры. Последние благодаря такому свойству воспроизводятся с максимальной чёткостью.

С помощью специальных проб определяют, имеется ли свойство жидкотекучести или нет. Замеры принимают длину заполненной спирали Архимеда.

Минимальная толщина стенок у отливки как раз выбирается в зависимости от жидкотекучести:

  1. 3,4 мм для мелких отливок из СЧ в песчаных формах.
  2. 8-10 мм в случае со средними габаритами.
  3. 12-15 – для крупных.

Остальные отливки выпускаются с толщиной в 5-7, 10-12 или 12-20 мм.

Не стоит забывать об усадке. Такое название дали процессу, при котором отливка уменьшается в объёмах во время охлаждения. Начинается всё в литейной форме, с металла в жидкой форме. И до тех пор, пока не наберётся температура окружающей среды.

Разные материалы отличаются друг от друга разным уровнем усадки. Для её определения важными становятся следующие факторы:

  • Химический состав.
  • Температура заливки.
  • Конфигурация заготовки.

Стандартное значение –в пределах от 1,9% до 2,1%.

Чтобы не образовались большие напряжения и трещины, важно предусматривать сохранение следующих свойств:

  1. Равномерная толщина у стенок.
  2. Плавные переходы.
  3. Нормальные радиусы у сопрягающихся поверхностей.
  4. Устранение элементов, усложняющих усадку.

Стержни и материалы должны обладать повышенной податливостью для достижения лучшего результата.

Газопоглощением называют способность растворять разные газы, которой могут обладать литейные сплавы в расплавленном состоянии. Растворимость газов уменьшается, когда они находятся в затвердевшем состоянии, а потом охлаждаются. Из-за этого в отливках появляются браки в виде газовых раковин и пор.

Есть понятие ликвации – его применяют для неоднородности состава в различных частях отливки. Бывает дендритной, зональной.

Дендритная происходит в пределах одного ядра.

Зональной называют неоднородность, проявляющую себя по всему объёму отливки.

Отливки изготавливаются с использованием следующих нескольких способов:

  • Центробежное литьё.
  • Литьё под давлением.
  • В кокиль.
  • В формы со специальными оболочками.
  • По выплавляемым моделям.
  • В песчаные формы.

Есть так называемые специальные способы литья:

  1. Композиционное.
  2. С использованием магнитных полей.
  3. Суспензионное.
  4. Электрошлаковое центробежное.

О литье в песчаных формах

Литейное производство и направлено на получение отливок. Это литые металлические изделия, которые производят путём заливки металлов в расплавленной форме внутрь специальных литейных форм. Потом идёт застывание, приобретение конкретных очертаний.

Технологическая оснастка при литье

Литейная оснастка – это специальные приспособления, которые применяют для получения необходимых изделий с требуемыми характеристиками. Пример – опоки, стержневые ящики, подмодельные плиты, модели и так далее.

Начнём с моделей. Это наименование приспособлений, с помощью которых получаются отпечатки полости, соответствующие наружным конфигурациям отливки. В форме при сборке устанавливают стержни, которые способствуют образованию отверстий и полостей внутри отливок, иных контуров со сложными габаритами.

Изначально модели делают больше по сравнению с отливкой, чтобы учесть величину линейной усадки, характерной для сплава. Размер припусков учитывают при механической обработке отливок. Припуском называют слой металла, который удаляется при такой работе. Он определяется размерами отливок, видами сплава. По сравнению с боковыми и верхними частями конструкции, припуск для верхних должен быть чуть больше. Это связано с появлением наверху скоплений в виде газовых включений, частичек формовочной смеси, шлаков. Возникают некоторые проблемы при удалении стержневой смеси, спёкшейся внутри, с отверстий небольших размеров. При последующей обработке механическим путём это отрицательно сказывается на стойкости режущего инструмента. Литьём рекомендуют выполнять отверстия, чей диаметр находится в пределах 25-30 мм.

От высоты отливки зависят формовочные уклоны. Их добавляют в модели, чтобы было проще удалить их из формы. Обработке подвергаются поверхности Формы могут быть разрушены при извлечении, если не будет уклонов. А сама формовочная смесь с большой вероятностью просто осыпается.

Знаки – наименование выступающих частей у модели, при помощи которых получают отпечатки знаковых частей у стержней. Главное – отсутствие уклонов и острых углов в местах, где стенки отливок сопрягаются.

Термин галтель применяют по отношению к скругленным внутренним углам. Наружные предполагают применение название «закругления».

Для моделей применяют следующие разновидности материалов:

  • Пластмасса.
  • Металлические сплавы.
  • Древесина.

В случае с деревом используют хорошо просушенную основу, из бука или ясени, сосны. Изделие склеивают из отдельных брусочков, а не из цельного куса, это предотвращает коробление. При этом придерживаются различного направления у волокон, составляющих изделие. Но такие конструкции не могут похвастаться долговечностью.

Чистая рабочая поверхность и высокая точность – главные преимущества металлических аналогов, помимо увеличенного срока службы. В производстве применяют сплавы алюминия, отличающиеся уменьшенной плотностью. Этот материал не окисляется, допускает обработку резанием.

Небольшая масса, защита от коробления, устойчивость к воздействию влаги – главные преимущества моделей из пластмасс. Одно из перспективных направлений – применение вспененного полистирола. Его не требуется вытаскивать из формы перед заливкой, материал газифицируется при выполнении работы.

Для изготовления стержней применяют специальные стержневые ящики. Они обеспечивают увеличенную скорость при извлечении стержня и делают уплотнение смеси равномерным. Отличаются наличием уклонов, что делает их похожими на модели. По конструкции бывают неразъёмными и разъёмными, а материалы в производстве – те же, что и у моделей.

Опоками именуют рамы различной формы, изготовленные из металла. Их главное назначение – использование формовочных смесей для изготовления литейных полуформ. Материалы в производстве применяют следующих разновидностей:

  1. Сталь.
  2. Чугун.
  3. Алюминиевые сплавы.

Собираются из отдельных частей, бывают литыми или сварными. Для уменьшения массы стенки часто делают с дополнительными отверстиями. Это упрощает удаление газов, способствует лучшему скреплению между элементами конструкции. Скобы и другие подобные приспособления служат для скрепления.

О формовочных, стержневых смесях

Литейное производство предполагает широкое применение глинистых и других смесей для получения отливок с разными формами. Есть разовые формы, в которых можно получить только одно изделие за раз. Форма разрушается, когда готовую деталь изымают, выбивают.

Для формовочных и стержневых смесей важно наличие определённых характеристик. Стоит подробнее остановиться на некоторых из них.

Газопроницаемость.

Из-за пористости многие смеси пропускают газы через стенки формы. Расплавленные формы металлов всегда содержат растворённую форму газов, которые выделяются при охлаждении и затвердении. Из самих формовочных материалов при нагревании газы тоже выделяются в большом количестве. Газовые пузыри или раковины как раз появляются в теле изделия, если газопроницаемости недостаточно.

Непригораемость.

При наличии такого свойства смесь способна долгое время выдерживать высокие температуры, не вступая с ними в химические реакции, не оплавляясь. Качество поверхности ухудшается из-за плёнок пригара, в этом случае и дальнейшая обработка поверхности затруднена. Газопроницаемость резко начинает уменьшаться, если материал оплавляется.

Податливость.

Название для способности смеси сокращать свой объём при воздействии усадки металла. Отливка выпускается с напряжениями, если этой характеристики недостаточно. Результат – образование трещин в дальнейшем.

Пластичность.

Сохранение смесью полученной формы, воспринимать очертания модели или стержневого ящика.

Поверхностная прочность или осыпаемость.

То, как смесь сопротивляется истирающему воздействию металлической струи. При недостаточном уровне частицы формовочной смеси отделяются друг от друга, попадают в отливку.

Прочность.

Сохранение формы без разрушения, пока её готовят и обрабатывают. Даже сильные толчки при сборке и транспортировке не должны приводить к быстрому появлению дефектов. Давление заливаемого металла тоже должно сохраняться.

Стержневые и формовочные материалы в равной степени изготавливаются из искусственных, либо натуральных исходников. Основой для большинства смесей служит песок. В большинстве случаев выбирают кварцевую его разновидность, состоящую из кремнезёма. Это огнеупорный, твёрдый и прочный материал. Для мелкого литья используют разновидности мелкозернистых составов. Благодаря этому формовочная смесь может похвастаться газопроницаемостью.

Цирконовый песок, хромит и некоторые другие материалы применяют в изготовлении деталей редко. Это дорогие аналоги, хотя они лучше кварцевого песка в смысле теплопроводности, термохимической устойчивости. Пример назначения таких основ – крупные стальные отливки с чистой поверхностью, когда сохранение определённых характеристик становится особенно важным.

Вторым исходным материалом для формовочных смесей можно назвать глину. Это связующее вещество, способствующее сохранению прочности и пластичности. Широко распространены бентонитовые, каолинитовые разновидности состава. Гидридные оболочки из водных молекул образуются на поверхности глиняных частиц в присутствии влаги. После такой обработки сцепление материала улучшается, обеспечивается лёгкое скольжение. Связующая способность глины становится лучше, если она удерживает больше воды на поверхности, пластичность формовочной смеси в этом случае тоже лучше. Прочность смеси возрастает по мере того, как воду удаляют с поверхности.

В качестве связующих веществ для формовочных смесей может выступать не только глина, но и другие компоненты:

  1. Сульфитно-спиртовая барда.
  2. Декстрин.
  3. Смолы синтетического происхождения.
  4. Жидкое мыло, и так далее.

Такие вещества включают в состав в количестве 1,5-2%. После отвердение занимает гораздо меньше времени.

В песчано-глинистые смеси вводят и другие добавки, чтобы улучшить первоначальные качества. Пример противопригарных материалов для стального литья:

  1. Хромистый железняк.
  2. Пылевидный кварц.

Каменноугольная пыль и мазут применяются в случае с чугунным и цветным литьём. Древесные опилки добавляют для увеличения газопроницаемости, податливости.

Формовочные смеси можно разделить на несколько групп по характеру использования:

  1. Единые.
  2. Наполнительные.
  3. Облицовочные.

Сырыми или сухими они могут быть в зависимости от состояния литейной формы при её изготовлении.

В зависимости от литейного сплава выбирают, какой будет состав у формовочной смеси. Учитывают факторы вроде температуры плавления и усадки, массу и размеры, конфигурацию отливки.

Тонкий слой противопригарных материалов используют для предотвращения пригара, улучшения чистоты поверхности. Припыли применяют в случае с сырыми формами.

Формы для чугунных отливок предполагают применение:

Порошкообразную смесь магниевого оксида.

Древесный уголь.

Бетонит.

Порошкообразный графит.

В случае со стальными отливками основная смесь состоит из других компонентов:

  1. Циркон.
  2. Пылевидный кварц.
  3. Огнеупорная глина.
  4. Оксид магния, другие подобные материалы.

Противопригарные краски актуальны, когда речь идёт о сухих формах. Допустимо добавление водных суспензий материалов, вместе со связующими.

Литниковые системы

При заливке металлов используют так называемую литниковую систему. Это совокупность каналов и резервуаров, по которым сплав попадает в полость формы из ковша. Литниковая система работает, чтобы металл попадал в форму, и процесс был непрерывным. Обеспечиваются и другие этапы работы:

  • Питание отливки, чтобы компенсировать усадку.
  • Защита от дальнейших разрушений в форме.
  • Защита от попаданий внутрь шлака, воздушных струй.

Любая литниковая система состоит из следующих компонентов:

  1. Питатели.
  2. Шлакоулавитель.
  3. Стояк.
  4. Литниковая чаша.

Размывающее действие струи расплава уменьшается благодаря использованию чаши. Эта же часть способствует задержанию всплывающего шлака. Иногда устанавливают фильтры, чтобы повысить эффективность задержания шлаковых включений не только в чашу, но и в другие элементы. Это керамические сетки, либо применяют специальную стеклоткань.

Стояк – это канал с круглым сечением, бывает коническим, либо сужающимся к низу. По нему металл попадает в шлакоулавитель.

Сам шлакоулавитель нужен для задержания шлака и других частиц. Это горизонтальный канал, расположенный в верхней полуформе, обычно трапециевидного сечения.

Суть питателей в том, что это каналы с сечением в виде прямоугольника или трапеции. Они примыкают к шлакоуловителю в нижней части. Назначение деталей – подвод металла непосредственно в полость формы.

Обычное место крепления для шлакоуловителей – нижняя полуформа, они должны при этом сохранять некоторое расстояние до стояка и концов шлакоуловителя. Иначе шлак и другие частицы с большой вероятностью задерживаются внутри. Самое большое сечение у стояка, далее идёт шлакоуловитель, затем питатели.

Каналы для выхода из формы воздуха и газов по-другому называются опорами. Их монтируют над самым высоким местом полости формы, чаще это сторона, противоположная месту, где металл заводят внутрь. Благодаря такой конструкции усадка застывающего материала происходит мгновенно. Полноту заполнения формы металлической частью проще контролировать.

Есть ещё специальные полости, наполненные металлом в жидкой форме. При изготовлении отливок их делают из стали у наиболее массивных частей. Благодаря этой части отливки защищены от рыхлот и усадочных раковин. Сами такие «прибыли» застывают последними, они способствуют бесперебойному процессу заполнения формы жидким металлом.

Ярусная, верхняя и нижняя литниковые системы применяются в зависимости от размеры и форм отливок, состава и свойств литейного сплава. Для мелких деталей с небольшой высотой актуальна верхняя система, она самая простая и доступная. Чем больше высота – тем больше металл размывается струёй, увеличивая процесс разбрызгивания и окисления. Количество неметаллических включений в телах отливок после этого увеличивается.

В случае со средними и толстостенными отливками актуальна нижняя система. Она делает так, что заполнение металлом проходит спокойно. Но конструкция и эксплуатация в этом случае усложняются.

При ярусной системе питания отливок идёт последовательно снизу вверх. Применяется для самых крупных разновидностей отливок. Она сложна в изготовлении, предполагает дополнительный расход металла.

Литейная сталь и чугуны — свойства и производство по ГОСТ

Кроме изготовления стальных конструкций путем сварки или сборки болтовыми соединениями, широко используются и методы литья. Мы не будем останавливаться на способах литья, отметим лишь, что литейные сплавы должны обладать совокупностью свойств, характеризующих способность расплавленного металла образовывать качественные отливки. Среди черных металлов вполне приличными литейными свойствами обладают литейные стали и чугуны.

Важны, в основном, две характеристики – наличие достаточно большого интервала температуры плавления и минимальная величина усадки при затвердевании. Для литейных сталей температура плавления лежит в пределах 1400-1525°С и литейная усадка 1,6-1,2 %; для чугунов эти величины равны 1150-1200°С и 0,8-1,2 %, соответственно.

Литейные стали имеют химический состав, мало отличающийся от химического состава нелегированных низкоуглеродистых. Содержание углерода оказывает серьезное влияние на литейные свойства стали – чем оно выше, тем хуже литейные свойства. Поэтому марки литейных сталей обычно ограничиваются содержанием углерода 0,17-0,25 %, редко выше. Так как литейные стали, в отличие от конструкционных сталей, изготавливаются при наличии кислой обкладки в печах, а не основной, как при изготовлении конструкционных сталей, то и содержание вредных примесей в них несколько выше, а именно, содержание серы и фосфора ограничено величинами не более 0,05%. Обозначаются литейные стали так: сначала содержание углерода в сотых долях процента, округленное до числа, кратного пяти, затем добавляется буква Л: сталь 15Л, 25Л, 35Л.

Чугуны имеют значительно большее разнообразие вследствие того, что структура чугуна и его свойства зависят как от химического состава, так и от скорости охлаждения. В зависимости от формы графита и количества цементита выделяют: белый, серый, ковкий и высокопрочный чугуны. Чугуны содержат постоянные примеси (кремний, марганец, фосфор и серу), а в некоторых случаях легирующие элементы, как полученные в результате доменных процессов из-за особенностей состава руд, так и привнесенные дополнительно (хром, ванадий, алюминий и др.)

Белые чугуны – это железо-углеродистые сплавы, содержащие от 2 до 6,67% углерода, в структуре которого углерод присутствует только в виде цементита. Свое название этот чугун получил из-за светлого цвета излома.

Железо-углеродистые сплавы, у которых углерод полностью или частично находится в свободном состоянии в виде графита, называются серыми чугунами. Излом такого чугуна имеет серый цвет. В зависимости от степени распада цементита на перлит и графит, могут быть ферритоперлитные, перлитные или перлитоцементитные серые чугуны.

Ковкий чугун получают длительным отжигом белого чугуна, в результате которого образуется графит хлопьевидной формы; металлическая основа такого чугуна – феррит и реже перлит.

Высокопрочный чугун имеет в своей основе шаровидный графит, который образуется в процессе кристаллизации. Шаровидный графит ослабляет металлическую основу не так сильно, как пластинчатый.

Обозначения литейных чугунов: Л1, Л2,… Л6; рафинированный марганцем ЛР1, ЛР2 … ЛР6, чугун с пластинчатым графитом (СЧ с номером, обозначающим величину временного сопротивления разрыву в кгс/мм), чугун с шаровидным графитом (ВЧ с числом, аналогичным предыдущему). Содержание углерода в них 3,5-3,6 %, кремния 1,6-3,6 %; марганца 0,3-1,5 %, фосфора 0,08-1,2 % и серы 0,02-0,05 %.

Кроме этих, существуют специальные формы чугуна (антифрикционный и легированный), но они, как правило, в практике горячего цинкования не встречаются.
Возможно Вас так же заинтересуют следующие статьи:
comments powered by HyperComments

ecm-zink.ru

Изготовление литейных форм

Ручное изготовление форм предполагает выполнение действий в следующей последовательности.

Начинают с изготовления нижней полуформы.

На подмодельную доску устанавливают нижнюю половину модели, у которой нет центрирующих шипов. После этого ставят опоку. Разделительным составом покрывают поверхность модели и доски, чтобы смесь и оснастка не прилипали друг к другу. Обычно для этого применяют графит или тальковый порошок, кварцевый песок. 20-30 миллиметровый слой облицовочной смеси тоже наносят на модель, руками вокруг самой модели уплотняют эту же часть. Остальной объём опоки заполняется наполнительной смесью. Трамбовка сначала идёт у стенок опоки, потом переходит к средней части. Линейку применяют для срезания излишков. Отверстия для выхода газов накладывают на расстоянии 10-15 миллиметров от модели, и 40-50 мм друг от друга. Вторая подмодельная доска закрывает заформованную опоку, потом всё переворачивают на 180 градусов.

Изготовление верхней полуформы.

Верхнюю половину модели устанавливают на нижнюю половину, по центрирующим шипам. Следом устанавливают модели шлакоуловителей вместе со стояком и выпорами. Тонким слоем сухого кварцевого песка посыпают поверхность разъёма формы, чтобы защититься от прилипания смеси в нижней опоке к формовочному аналогу. По центрирующим штырям на нижнюю опоку устанавливают верхнюю. Наполнение формовочными смесями идёт так же, как и в случае с верхней частью. Литниковую чашу прорезают гладилкой, когда уплотнение смеси завершено.

Извлечение моделей.

Требуется раскачать модели стояка и выпоров, удалить их из верхней полуформы. Опоку внизу тоже снимают, потом поворачивают на 180 градусов, чтобы разъём находился вверху. Питатели прорезают гладилкой, в плоскости разъёма нижней полуформы. Половину обычных моделей и модель шлакоулавителей тоже удаляют из полуформ, слегка раскачав конструкции. Важно удалить любые дефекты, которые появились в процессе работы. Для удаления возможных засоров всё обдувают сухим влажным воздухом. Молодой древесный уголь или графит применяют для припыливания поверхности.

Сборка литейной формы.

Стержень устанавливают в нижнюю полуформу, когда подобное действие необходимо. Потом сверху идёт верхняя полуформа. Скобами или штырями конструкцию фиксируют, потом на верхнюю полуформу устанавливают груз. Это необходимо, чтобы предотвратить уход металла жидкой формы через разъём во время отливки. Металл заливают в форму, пока не будет заполнен весь объём.

Литьё на основе выплавляемых моделей

Такой способ использовался для литья скульптур ещё много лет назад. В 40-ых годах двадцатого века нашёл применение в сфере машиностроения.

Отличается трудоёмкостью процесса и высокими ценами. Но во многих ситуациях оправдано и применение такой технологии, например:

  1. При отсутствии последующей обработки механического характера.
  2. Если механическая обработка сама слишком сложная и трудоёмкая.
  3. Используются труднообрабатываемые сплавы.

Изготовление отливок по выплавляемым моделям существует большое количество, как и рецептур по модельным и формовочным смесям.

Широкое распространение получила смесь, в которой по 50% стеарина и парафина. Под небольшим давлением в пресс-форму из печи размещают легкоплавкий сплав в расплавленном состоянии. Результат – легкоплавкие модели, сохраняющие точные размеры.

Легкоплавкую модель достают из формы, когда изделие полностью затвердеет. Потом всё собирается в блоки с литниковой системой. Следующий этап – погружение в огнеупорную суспензию, состав которой включает 70% кварцевой муки и 30% гидролизованного раствора этилсиликата с повышенной клейкостью. Блок с моделями посыпают кварцевым песком, потом подвергают сушке. Эти операции повторяют по несколько раз, чтобы в итоге получить конструкцию с толщиной 5-8 миллиметров.

Плавление идёт с помощью горячего воздуха, температура которого составит 120-150 градусов, допустимо применение и холодной воды. В металлический жакет помещают облицованную и просушенную форму, когда речь идёт о крупных разновидностях отливок. Потом всё засыпают песком и уплотняют, либо засыпают металлическими смесями.

Потом идёт прокаливание готовой формы, пока не наберётся температура в 850-900 градусов. При таких условиях выгорают все остатки легкоплавкого металла. Сама форма становится прочной керамической оболочкой.

Расплавленный сплав помещают в форму. Используют центробежные силы, когда возникает необходимость.

Блоки отливок выбивают из опок после того, как металл затвердел. Отдельно отбивают корку из керамики. Для этого отливки выщелачивают в ванне с раствором при 120 градусах. Потом остаётся всё промыть в горячей воде. Многие заводы автоматизируют и механизируют процессы обработки.

Для получения точных отливок в промышленности начали применять следующие технологии:

  • По газифицирующим моделям.
  • По выжигаемым моделям.
  • По размораживаемым.
  • На основе растворяемых.
  • Газофицируемые модели или использование пеномоделей – один из самых перспективных методов.

В этом случае предполагается применение неразъёмных форм. Из них модель не извлекают. Теплота расплавляемого металла и обеспечивает газификацию. Масса итоговых отливок – от 0,2 килограмм до нескольких тонн.

Малой плотностью отличается сам пенополистирол, который применяют в изготовлении деталей. Его разложение происходит при 300-350 градусах. В результате выделяются только пары стирола, обработка идёт даже обычной проволокой и ножами.

Для единичного производства берут пенопластовые модели, проходящие ручную обработку. Пилы, рубанки и станки становятся незаменимыми помощниками в этом процессе. Модели можно изготавливать по частям, чтобы потом соединять их в единое целое.

Вспенивание внутри форм из пластмасса или металла – метод, который применяют в случае с крупносерийным производством. Полистироловые гранулы загружают внутрь формы с полостью, которая напоминает модель по конфигурациям и размерам. Гранулы начинают вспениваться и расширяться при нагревании, спекаются друг с другом. Полость формы заполняется полностью. Модель извлекают из формы после окончания охлаждения.

Для формовки пенопластовых моделях в опоках используют обычные методы. Встряхивающие и вибрационные станки применяют для формовочных смесей.

Форму заливают сплавом, когда производство почти закончено. Модель проходит газификацию. Газы удаляются в выпоры. Отливка образуется на том месте, где раньше была модель.

Изготовление отливок на пенопластовой основе предполагает и другие методы. На завершающих этапах удаление модели предполагает применение таких технологий:

  1. Растворение.
  2. Прокаливание формы.
  3. Электроплавка.
  4. Продувка формы.

Пенопластовые модели легко заменят выплавляемые аналоги.

Литейная сталь

Литейная сталь – это специальный материал для производства отливок. В обозначении таких сталей в конце всегда присутствует буква «л» (15Л, 20Л, 25Л и т.д.) Существует множество литейных марок данного материала, однако почти для всех них характерны такие свойства, как низкая жидкотекучесть, серьезная усадка, склонность к образованию усадочных пористостей, раковин и трещин. Улучшить эти качества позволяют некоторые примеси, благодаря которым получают специальные литейные стали.

Их можно классифицировать по структуре материала, химическому составу, назначению или способу выплавки, однако большинство специалистов пользуются следующей градацией литейных сталей:

  • обыкновенного назначения (самый востребованный и недорогой материал марок 15Л-55Л)
  • ответственного назначения
  • особо ответственного назначения

Последние два вида отличаются наличием особых свойств и заметно более высокой стоимостью самого материала.

Свойства литейных сталей

Отличным примером материала с особыми свойствами может стать сталь 20Х21Н46В8РЛ. Здесь применено не более 30% железа, а содержание никеля всегда превышает 43%. Последний способствует одновременно повышению пластичности стали и её твердости, повышению коэрцитивной силы и удельного электрического сопротивления. Проявляется это снижением магнитной проницаемости и магнитной индукции. Наконец, никель существенно повышает ударную вязкость литейной стали, увеличивает прокаливаемость материала, тем самым улучшая его жаропрочность и крипоустойчивость. Благодаря подобным физико-химическим свойствам литейные стали становятся идеальным материалом для обладающих особыми магнитными и электрическими свойствами отливок, которые планируется подвергать воздействию высоких нагрузок и температур.

Применительно к своему химическому составу эти материалы относят к ферритному или аустенитному классу. В обоих случаях подвергая исходный материал высокотемпературной обработке (более 600оС) на его поверхности образуется тончайшая защитная пленка, обеспечивающая готовому изделию более высокую окалиностойкость, которая противостоит разрушительному воздействию горючих газов и воздуха. При этом отливки продолжают сохранять приемлемый уровень своих механических свойств.

Сфера применения литейных сталей

Разнообразные сплавы, в которых применены литейные стали, используются промышленными предприятиями, работающими в химической и нефтехимической сферах, в судостроении и энергетике, в угледобывающей, целлюлознобумажной и многих других отраслях. Для изготовления сварно-литых изделий, подвергающихся сильным ударным нагрузкам, широко применяются марки 08Г2ДНФЛ, 20ХГСФЛ и 12ГФЛ (низкоуглеродистые, не нуждающиеся в термической обработке). На производство станин прокатных станов идет среднеуглеродистая литейная сталь, подвергающаяся термической обработке, позволяющей значительно уменьшить литейные напряжения.

fx-commodities.ru

Применение оболочковых форм

Расплавленный металл свободно заливается в оболочковые формы на основе из термореактивных смесей.

Разновидность способа литья с разовыми песчаными формами. В итоге появляются поверхности с высоким качеством изготовления. В основе смеси – кварцевый песок и смола синтетического происхождения. При 70 градусах фенолформальдегидные смолы начинают растворяться, их температура плавления достигает 120 градусов. Спустя несколько секунд материал переходит к отвердению. При 450 градусах у смолы идёт выгорание. Способы получения оболочковых форм основаны на способностях смол переходит из жидкого состояния к твёрдому необратимому. После заливки модель легко разрушается, освобождая необходимое место.

Литьё в металлические формы или кокиль

Кокилями называют модели, изготовленные из металла. Расплавленные составы свободно растекаются по ним для получения результата.

Чугун, сталь и другие сплавы применяют при изготовлении кокиля чаще всего. Способы такого литья отличаются своими преимуществами:

  1. Большое число заливок, от нескольких десяток до сотен тысяч.
  2. Чем ниже температура заливаемого сплава, тем больше стойкость.
  3. Применение формовочной смеси в этом способе исключено.
  4. Технико-экономические показатели производства улучшаются.
  5. Лучше санитарно-гигиенические условия труда.

Процесс катализации сплава ускоряется благодаря высокой теплопроводности кокиля. Тогда отливки обладают повышенной герметичностью, механические свойства у них тоже повышены.

Допустимо многократно получать отливки разных размеров, ведь металлические формы прочные. Качество поверхности повышается при минимальном физико-химическом взаимодействии между металлом формы и отливки.

Есть и недостатки:

  • Необходимость точного соблюдения технологических требований, иначе возникнет напряжение.
  • Высокая стоимость производства кокилей.
  • Малая стойкость форм.

До 6% от общего числа стальных отливок получают в кокилях. Для серийного и массового производства этот метод отливки будет целесообразным с экономической точки зрения. Изготовление чаще идёт из двух половин, которые в обычном литье соответствуют полуформам. Внешней конфигурации отливки соответствует рабочая полость кокиля. В эту форму устанавливают песчаные стержни, образующие полость с конфигурациями отливки. Каналы литниковой системы выполняют, чтобы заливать кокиль жидким металлом в плоскости разъёма или в стержне. Между полостью кокиля и стержнем пространство полностью заполняют сплавом, в результате чего получаются отливки. Кокиль раскрывают после затвердевания, изнутри выталкивается готовая отливка.

После процессы повторяют.

Кокиль выпускают с одним или нескольким разъёмами, в зависимости от конфигурации отливки. Сами плоскости у разъёма тоже бывают нескольких видов:

  1. Горизонтальные.
  2. Вертикальные.
  3. Комбинированные.

На рабочую поверхность наносят теплоизоляционные покрытия, способствующие достижению следующего результата:

  • Повышение стойкости кокиля.
  • Защита от образования закалённого слоя возле поверхности.
  • Уменьшение скорости охлаждения отливок.
  • Для изготовления теплоизоляции применяют один материал, либо сразу несколько. Патока или жидкое стекло выступают связующими материалами.

Кокиль отличается почти полной газонепроницаемостью. Через выпор и специальные каналы газ удаляется из конструкции. Стандартная глубина каналов составит 0,2-0,5 мм. Жидкий сплав через них не вытекает, зато для удаления именно газов конструкция подходит хорошо.

По сравнению с песчаными формами, такой процесс гораздо легче механизировать и автоматизировать. Однопозиционные и карусельные кокильные машины облегчают механизацию. Машины помогают автоматизировать такие процессы:

  1. Открывание и закрывание кокилей.
  2. Постановка, удаление металлических стержней.
  3. Выталкивание отливок из кокиля.

Литейные стали и их свойства

К литейным сталям относят железоуглеродистые сплавы, содержащие до 2,14% С и другие элементы (Mn, Si, Р, S, Cr, Ni, W, Mo, V и т. д.), попавшие в сталь из шихтовых материалов либо специально введенные в нее в определенных количествах для придания сплаву необходимых эксплуатационных и технологических свойств.

В настоящее время стальные отливки используют во всех отраслях машиностроения; по объему производства они занимают второе место после чугунов. Из сталей отливают обычно детали, к которым предъявляют повышенные требования по прочности, пластичности, надежности и долговечности в процессе эксплуатации. Литейные стали классифицируют в основном по способу выплавки, химическому составу, структуре, назначению. По химическому составу литейные стали разделяют на углеродистые, а также низко-, средне- и высоколегированные.

По структуре углеродистые стали могут быть ферритными или перлитными, а легированные — ферритными, мартенситно-ферритными, мартенситными, аустенитно-мартенситными, аустенитно-ферритными и аустенитными. Так как стальные отливки обычно подвергают термической обработке, стали классифицируют также по структуре в термически обработанном состоянии. Так, для термически обработанных углеродистых и многих низко- либо среднелегированных сталей характерна перлитная структура, а для высоколегированных жаропрочных и жаростойких сталей, так же как и для износостойкой высокомарганцовистой стали 110Г13Л,— аустенитная. Структура отливок из высоколегированных сталей в основном определяется природой и количеством легирующих элементов, содержанием углерода, режимом термической обработки, поэтому приведенная выше классификация этих структур условна. В зависимости от скорости охлаждения, например, у сталей мартенситного класса можно получить перлитную структуру и наоборот.

В зависимости от назначения литой детали и требований к ней конструкционные нелегированные и легированные стали разделены (согласно ГОСТ 977—75) на три группы: для изготовления отливок общего назначения, ответственного назначения и особо ответственного назначения. Для каждой группы отливок установлены показатели контроля. Для отливок I группы допускается содержание в стали 0,05—0,06% S и 0,05—0,087% Р; для отливок II группы —0,045—0,06% S и 0,04—0,07% Р; для отливок III группы — 0,045—0,05% S и 0,04— 0,05% Р. Содержание других элементов одинаково для сталей всех групп отливок.

По способу выплавки различают стали, выплавленные в печах с кислой и основной футеровкой, так как состав футеровки оказывает существенное влияние на ход процесса плавки и свойства готового сплава. В печах с кислой футеровкой, главной составляющей которой является кремнезем SiO2, выплавляются обычно углеродистые и многие низколегированные конструкционные стали. В печах с основной футеровкой (магнезитовой, магнезитохромитовой, хромомагнезитовой) выплавляют преимущественно средне- и высоколегированные стали.

Большую часть фасонных отливок (около 65%) изготовляют из углеродистых конструкционных сталей (ГОСТ 977—75) следующих марок 15Л, 20Л, 25Л, 30Л, 35Л, 40Л, 45Л, 50Л, 55Л. В обозначении марки число означает среднее содержание углерода в сотых долях процента (например, для марки 25Л—0,25% С), а буква «Л» указывает, что сталь предназначена для литья (табл. 5.5.). Как видно из приведенных в таблице данных, с увеличением содержания углерода повышается прочность и снижаются пластические свойства сталей. Одновременно улучшается жидкотекучесть их и уменьшается усадка. Важное значение имеют требования, указанные в примечаниях в отношении содержания вредных примесей — серы и фосфора. Сера вызывает склонность сталей к образованию горячих трещин, а фосфор — хрупкость при обычных и низких температурах.

5.5. Свойства некоторых углеродистых конструкционных литейных сталей.

* В зависимости от назначения сталей содержание в них вредных примесей имеет различные ограничения: для отливок общего назначения допускается содержание серы до 0.06% и фосфора до 0,08%, тогда как для отливок особо ответственного назначения количество каждого из этих элементов не должно превышать 0,05%; содержание кремния в сталях всех указанных марок должно быть в пределах 0,2—0,52%. а Cr. Ni, Cu — не более 0.3% (каждого).

В ГОСТ 977—75 (СТ СЭВ 4459—84, СТ СЭВ 4561-84) предусмотрено также сорок пять марок легированной (Cr, Ni, Mn, Mo, V, Cu и др.) конструкционной стали с содержанием каждого из легирующих элементов не более 2% (мае.).

На отливки из высоколегированных сталей со специальными свойствами установлен ГОСТ 2176—77. Стандартом установлено 30 марок высоколегированных сталей указанного назначения. Марки включают буквенное обозначение легирующих элементов и следующие за ним числа, указывающие на среднее содержание этого элемента в массовых процентах. Числа в начале наименования марки характеризует среднее содержание углерода в процентах, а буква «Л» в конце показывает, что сталь предназначена для фасонного литья. Так, широко используемая в машиностроении коррозионностойкая (нержавеющая) сталь аустенитного класса 10Х18Н9ТЛ содержит не более 0,12% углерода, 17— 2U% хрома, 8—11% никеля и до 0,6% титана, а отличающаяся высокой износостойкостью высокомарганцовистая сталь 110Г13Л, идущая, например, на отливку звеньев гусениц тракторов и других гусеничных машин, содержит 0,9—1,3% углерода и 11,5—14,5% марганца. Для большинства рассматриваемых легированных сталей строго ограничивается содержание вредных примесей (до 0,03—0,035% серы и до 0,035—0,04% фосфора). Буквенные обозначения легирующих элементов приняты теми же, что и в марках легированных чугунов (см. примечание к табл. 6.3), а других: Ф—ванадий, В — вольфрам, Б — ниобий, Р — бор.

ГОСТ 21357—75 установлен на отливки из хладно-стойкой и износостойкой стали для деталей машин и металлоконструкций, эксплуатируемых при температурах до —60°С. К числу этих сталей относят углеродистые и легированные конструкционные (например, 15ЛС, 35МЛС, ЗОХМЛС, 35ХГСМЛС), а также высоколегированные со специальными свойствами 10Х18Н9МЛС и 110Г13МЛС. Буква «С» в конце марки указывает, что эта сталь предназначена для работы при температурах до —60°С. В рассматриваемых сталях хладностойкость и повышенная износостойкость обеспечиваются низким содержанием вредных примесей — серы и фосфора (не более 0,02% каждой), а также обработкой этих сталей при плавке комплексными раскислителями и лигатурами редкоземельных и других металлов в сочетании со специальными режимами термической обработки готовых отливок.

www.stroitelstvo-new.ru

Технология литья под давлением

Под давлением в этом случае осуществляются такие этапы, как заполнение сплавом и формирование отливок. В массовом производстве тонкостенных изделий технология стала незаменимой. Плюсы:

  • Большая точность размеров у отливок.
  • Высокое качество поверхности.
  • Отсутствие требований по механической обработке.

В час этим методом легко выполнить 200-400 циклов. Формы изготавливаются стальными при литье под давлением. Характерно применение неразъемных стержней, изготовленных из металла. По сравнению с кокилями, формы и конструкция здесь более сложные, поэтому возрастает и стоимость. Песчаные стержни слишком легко разрушаются под воздействием струи металла. Образуется газовая пористость, поскольку газы не успевают удалиться из формы.

Предполагается использование пресс-форм – это сложные приспособления из 30-=100 деталей. С рабочей частью, выполненной из специальных вкладышей. Для образования отверстий в отливке автоматически вставляются и вынимаются металлические стержни.

Камера прессования заполняется сплавом. Полость пресс-формы заполняется металлом во время этого процесса. Отливку выталкивают толкателями, когда конструкция раскрывается.

Машины для литья под давлением – разновидность сложных технических установок. Вот лишь основные детали:

  • Корпус.
  • Направляющие.
  • Гидравлические цилиндры. Последние приводят в движение половины пресс-формы, отвечают за металлические стержни.
  • Те же цилиндры создают давление для прессования металла.

Низкое давление – промежуточный вариант между обработкой под давлением и с использованием кокилей. Электронагреватели применяют для расплавления металла в герметически закрытом тигле. По стальному металлопроводу основные материалы попадают в форму. Давление газа внутри тигля снимают после отвердения, потом идёт удаление отливки.

Рейтинг
( 2 оценки, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями: