Станки для балансировки колес, их устройство и ремонт

Шиномонтаж – это прекрасный бизнес-выбор для людей, любящих и разбирающихся не только в машинах, но и в том, как зарабатывать деньги. Открывая собственную мастерскую, несомненно, необходимо задуматься о многих вещах. И, пожалуй, одной из первых тем в списке таких вопросов являются балансировочные станки. От правильного выбора станка будет напрямую зависеть удобство работы для сотрудников и качество полученного результата для клиента. Именно поэтому будет не лишним разобраться в самых лучших балансировочных станках на 2021 год, узнать об их ценах, достоинствах и недостатках.

Что такое балансировка


балансировочный станок

Разбалансированным считается колесо, у которого не совпадают геометрический центр и центр массы. При вращении такого диска появляются мощные центробежные силы, заставляющие вибрировать автомобиль. Кроме этого, быстрее изнашиваются детали подвески и резина.

Балансировка карданных валов и колес позволяет избежать неравномерного истирания покрышек, увеличить срок эксплуатации подшипников и подвески. Наибольший спрос на балансировку карданных валов и дисков проявляется в межсезонье, когда автолюбители переходят с зимней резины на летнюю и наоборот.

Сбалансировать колесо или карданный вал можно только на специальном оборудовании. Мало лишь грамотно собрать колесо, его нужно уравновесить. Специализированные балансировочные станки работают с дисками разных размеров и форм, обеспечивают различные режимы работы.

Почему нужна балансировка

Неравномерный износ резины или повреждения диска приводят к дисбалансу, то есть нарушению распределения массы колёс относительно горизонтальной и вертикальной плоскостей. Существует дисбаланс двух видов:

  1. Статический, когда ось вращения смещается по отношению к оси инерции и начинает двигать центр тяжести вверх и вниз.
  2. Динамический, когда ось вращения пересекается с осью инерции, нарушая распределение массы колеса по горизонтали. Диск во время движения автомобиля выписывает восьмёрку.

Различают два вида дисбаланса: статический и динамический

Дисбаланс вызывает вибрацию колёс во время движения. Несбалансированность колёс, особенно при движении на большой скорости, ухудшает управляемость, увеличивает длину тормозного пути, приводит к преждевременному износу деталей ходовой.

Разбалансированные колёса во время движения на большой скорости становятся причиной потери управления. Но даже если авария не случилась, постоянная вибрация приводит в негодность подшипник ступицы, а со временем и поломке всей ходовой системы ТС.

Задача процедуры — вернуть колёсам баланс во время вращения. Результат балансировки – равномерное распределение массы колеса относительно осей вращения.

Устройство станка

Конструкция состоит из опор, на которые устанавливается колесо, электромотора и датчиков измерения. Во время шиномонтажа деталь вращается, датчики определяют давление или вибрацию. На основании полученных данных выявляется место неуравновешенности.

Станки различаются по конструкции опор, которые могут быть:

  • мягкими: при тестировании измеряются амплитуда и частота движения опоры, спровоцированного кручением разбалансированного колеса. Под каждый вид детали существует собственный станок, поэтому результаты проверок более точны;
  • жесткими: измеряется давление и фаза ротора. Один станок тестирует различные виды деталей — универсальное приспособление, дающее менее точные результаты.

Стенды для балансировки могут быть с горизонтальной или вертикальной осью вращения. Точные замеры возможны при наличии автоматизированного привода.

Датчик скорости это одно из самых важных устройств в станке. Он работает по принципу акселерометра или магнитной индукции.

Датчик измерения угла разворота — второй важный тестер в станке.

На основании показаний датчиков и количества поворотов колеса высчитывают куда и сколько массы необходимо добавить.

Согласно принципу ввода данных балансировочные станки бывают:

  • автоматическими;
  • ручными.

Во втором случае мастер измеряет колесо вручную с помощью линейки и вводит данные вручную. Автоматическим станкам для работы требуются данные о диаметре, расстоянии до диска и иногда ширине. Такое оборудование быстрее выполняет балансировку карданных валов и дисков. Информация выводится на светодиодный или ЖК-монитор, в зависимости от модели, она может отображаться в графическом или цифровом виде.

Податливые опоры применяются в зарезонансных станках, а жесткие — в дорезонансных.

Податливые опоры под воздействием неуравновешенного вращающегося ротора совершают колебания. Амплитуды и фазы колебаний опор и являются информацией о неуравновешенности. Для измерения вибрации в этом случае применяют датчики вибрации — акселерометры (датчики ускорения) или датчики виброскорости.
Жёсткие опоры препятствуют колебанию ротора и вследствие этого испытывают давление. В этом случае для получения информации о неуравновешенности испльзуют датчики силы и измеряют давление ротора на опоры и его фазу.

Итак, опоры балансировочного станка снабжены датчиками, преобразующими их колебания (вибрацию) или давление от центробежных сил в электрические сигналы. Электрические сигналы датчиков поступают в измерительное устройство. Структура измерительного устройства и форма информации о неуравновешенности зависят от назначения балансировочного станка. В современных балансировочных станках применяют микропроцессорные измерительно-вычислительные устройства, позволяющие производить измерения одновременно на всех опорах, автоматически вводить данные измерений в вычислитель, который по заданной программе вычисляет места (угол) и массу корректирующих грузов.

Измерительно-вычислительная система Балком2С в составе балансировочного станка
Рис.6

Для вращения ротора в балансировочных станках применяют привод от двухшарнирного вала, от накидного ремня, воздушной струей и т. п. Исправление неуравновешенности, т. е. установка грузов или съём материала (сверление, фрезерование и т. п.), выполняют вручную или используя сверлильный или фрезерный портал, смонтированный на станке.

Станок для балансировки роторов весом до 100 кг и расстоянием между шейками до 950 мм ТБ-100 со сверлильным порталом.
Рис.7 Станок для балансировки роторов весом до 100 кг и расстоянием между шейками до 950 мм ТБ-100. Сверлильный портал дает возможность осуществлять корректировку масс не снимая вал со стоек станка.

Механические системы балансировочных станков классифицируют по числу степеней свободы ротора, а также по числу степеней свободы оси ротора вместе с подвижной частью станка. В классификации по числу степеней свободы ротора механические системы распределены по семи классам (рис. 1, а). Номер класса (римская цифра) соответствует числу степеней свободы жесткого ротора. Кроме того, введен дополнительный признак разделения механических систем на две группы: буквой А обозначены станки, имеющие раму, на которой размещены опоры ротора, а буквой В — станки с отдельными опорами, установленными на неподвижном основании. Это подразделение характеризует не только конструктивные особенности системы, но и особенности балансировочного процесса, так как в станках группы А выбор точек для измерения колебаний менее ограничен, чем в группе В. Одним из признаков технологической классификации балансировочных станков служат степень их универсальности, т.е. то разнообразие роторов, для которых они могут быть использованы. Чем больше это разнообразие, тем шире технологические возможности станка. Балансировочные станки разделяют на четыре типа: универсальные, определенного назначения, специальные и балансировочные комплекты. Универсальные балансировочные станки используют в серийном производстве для определения дисбалансов роторов различных конструкций. К этому типу относятся зарезонансные и дорезонансные станки с осевым или ленточным приводом, обладающие высокой точностью и быстрой переналадкой на новый тип роторов. На них можно балансировать роторы, отличающиеся по массе, длине и диаметру в 10..40 раз. Универсальные балансировочные станки характеризуются допустимой массой и диаметром ротора, расстоянием между опорами станка, диапазоном частот вращения ротора, мощностью привода и точностью станка. Минимально допустимая масса ротора — масса балансируемого ротора, при которой обеспечивается заданная точность станка. Максимально допустимая масса ограничена прочностью подвески опор. В нее входит масса ротора, его подшипников и корпуса, оснастки, т.е. вся масса, устанавливаемая на опоры станка. Допустимый диаметр ротора зависит от расстояния от центров опор до станины (пола) станка. Максимальное расстояние между опорами станка ограничено длиной направляющих станины, а минимальное — толщиной стоек. У станков, опоры которых имеют гнездо для установки подшипника, указывают его диаметр или наибольший диаметр цапф ротора. Диапазон частот вращения ротора при балансировке соответствует частотному диапазону измерительного устройства, частоте вращения и мощности приводного устройства. Универсальные балансировочные станки изготавливают нормальной и повышенной точности. Для балансировки роторов массой от нескольких граммов до десятков килограммов применяют зарезонансные станки с ленточным приводным соединением. Балансировку роторов массой до 1000 кг выполняют на зарезонансных и дорезонансных станках как с осевым, так и с ленточным приводом с разнообразными измерительными устройствами. Универсальные балансировочные станки для роторов массой более 1000 кг изготавливают с осевым приводом. Опоры станков для тяжелых роторов делают дорезонансными.

Станок ТБ-6000 для промышленной балансировки тяжелых роторов весом до 6000 кг, диаметром до 2000 мм и максимальным расстоянием между шейками 4600 мм.
Рис.8 Балансировочный станок дорезонансного типа ТБ-6000 для промышленной балансировки тяжелых роторов весом до 6000 кг, диаметром до 2000 мм и максимальным расстоянием между шейками 4600 мм.

Вертикальные балансировочные станки предназначены для статической балансировки в динамическом режиме деталей, не имеющих собственных несущих поверхностей. Принцип действия и конструкция основных узлов станка аналогичны горизонтальным станкам. Отличительной особенностью вертикальных станков является наличие шпинделя с вертикальной осью вращения, на конце которого находится зажимное устройство. Эти станки характеризуются допустимой массой и диаметром балансируемой детали, диапазоном частот вращения, мощностью привода и точностью станка. По вертикальным направляющим станка перемещается двухшпиндельная сверлильная головка, с помощью которой производится корректировка масс детали высверливанием необходимого количества металла. Станок может работать в полуавтоматическом режиме.

Вертикальный станок ТБ Верт 100 для балансировки дискообразных роторов весом до 100 кг и диаметром до 650 мм.
Рис.9 Вертикальный станок ТБ Верт 100 для балансировки дискообразных роторов весом до 100 кг и диаметром до 650 мм.

Станки для высокочастотной балансировки гибких роторов имеют дорезонансные опоры, осевой привод с широким диапазоном частот вращения, измерительное устройство с токовихревыми датчиками. На высоких частотах балансируют роторы массой до 300 т. Поэтому с целью уменьшения потерь мощности на трение о воздух баласировочное устройство с ротором помещают в герметичную камеру, в которой с помощью вакуумного насоса создается разрежение до 100 Па. Станки для высокочастотной балансировки являются сложными устройствами с дополнительными системами, обеспечивающими транспортировку ротора, смазку его опор, разрежение в камере и т.п.

Специальные балансировочные станки используют в крупносерийном и массовом производстве для балансировки роторов определенной массы и геометрии. Специальный станок изготавливают в нескольких экземплярах. Для повышения производительности балансировки специальные станки оснащают средствами механизации и автоматизации. Степень автоматизации станка зависит от условий производства и может быть различной. В простейшем случае она включает только определение дисбалансов, в более сложном — установку корректирующих масс и транспортировку роторов.

Станок (стенд) для балансировки ускорителей дробилок.
Рис.10 Станок (стенд) для балансировки ускорителей дробилок.

Стенд рассчитан на предварительную балансировку ускорителей
1
дробилок с массами от 50 до 1000 кг и более и диаметрами от 500 до 2000 мм. Стенд включает в себя вертикальный шпиндель
2,
установленный в подшипниках в станине
3
. Шпиндель с установленным на нём ускорителем
1
приводится во вращение электродвигателем
4
, соединённым со шпинделем с помощью муфты (на схеме не показана).Электродвигатель подключен в сеть с использование частотного регулятора, позволяющего изменять частоту вращения шпинделя в широком диапазоне. Конструкция станины обеспечивает возможность реализации двух вариантов её установки фундаменте, в том числе: — жёсткое крепление с помощью фундаментных болтов; — установка с использованием пружинных амортизаторов
5
. Жёсткое крепление обычно используется в случае балансировки тяжёлых крупногабаритных ускорителей, имеющих значительный исходный дисбаланс. Пружинные амортизаторы применяются при балансировке относительно небольших и лёгких ускорителей с целью повышения чувствительности стенда к колебаниям от сил неуравновешенности, следствием чего является повышение качества балансировки. Измерительная система стенда включает в себя два датчика вибрации
6
и
7
, датчик фазового угла
8
и измерительно-вычислительный блок
9.
С её помощью производится измерение вибрации станины стенда на частоте вращения шпинделя, по результатам которого в автоматическом режиме выполняется расчет параметров корректирующих грузов (их массы и угла съёма), обеспечивающих необходимое качество балансировки ускорителей дробилок. На данном стенде производится в основном черновая (предварительная) балансировка ускорителей. Окончательная (чистовая) балансировка ускорителей выполняется уже после их установки в дробилки, что обеспечивает возможность достижения минимального уровня вибрации дробилок в процессе эксплуатации. Для измерения вибрации и расчета массы и угла установки корректирующих масс используется система Балком2С. Также с помощью данной системы осуществляется пуск и остановка двигателя прибода и управление скоростью ео вращения. При необходимости стенд может быть оснащен системой измерения углового положения балансируемого ротора и доворота на заданный угол для автоматизации процесса установки\съема корректирующих масс.

Специализированный станок ТБ Вент 100 для балансировки крыльчаток вентиляторов большого диаметра, весом до 100 кг.
Рис.11 Специализированный станок ТБ Вент 100 для балансировки крыльчаток вентиляторов большого диаметра, весом до 100 кг.

Станок для балансировки роторов большого диаметра, весом до 100 кг. Был разработан специально для балансировки крыльчаток вентиляторов больших размеров. Станину из полимербетона на виброоппорах можно перемещать с помощью обычной роклы, что значительно расширяет возможности станка и дает возможность работать с крыльчатками диаметром значительно превышающим габариты самого станка. Балансируемый ротор располагается консольно на технологическом валу. Технологический вал может крепиться к стойкам станка (в корпусных подшипниках) постоянно для роторов небольшого веса (установка вручную) или ставиться вместе с ротором для более тяжелых роторов (установка с помощью грузоподъемных устройств).

Способы балансировки

Есть три способа балансировки колес и других вращающихся деталей:

  • винты регулировки — в детали высверливаются отверстия, куда закручиваются при надобности винты. Их можно множество раз менять, переставлять, что очень удобно;
  • высверливание — в необходимых местах проделываются пазы и отверстия, уменьшающие массу — это самый простой и распространенный на шиномонтажах метод;
  • балансировочные кольца — применяют только в металлообработке для ремонта фрезерных станков.

Виды устройств

На сегодняшний день существует три основных типа балансировочных станков.

  1. Станки для работы с колесами легковых авто.
  2. Станки для работы с колесами грузовых авто.
  3. Станки универсальные. Могут применяться для оценки колес и легковых, и грузовых авто.

Основная разница между этими типами устройств заключается в двух основных характеристиках балансировочного станка — грузоподъемность и диаметр. Также стоит отметить, что грузоподъемность напрямую зависит от диаметра шины.

Классификация агрегатов осуществляется еще и по способу управления. В данном случае речь идет об автоматических или ручных приборах. В случае автоматических станков все данные о колесе он будет считывать самостоятельно. Настройка балансировочного станка ручного типа заключается в том, что все исходные данные должны быть загружены оператором вручную. Естественно, что разница во времени обслуживания на автоматическом и ручном станке сильно отличается и автомат работает гораздо быстрее. Это обусловлено тем, что система будет сама считывать геометрию и другие параметры покрышки. Что касается технологий, используемых станком для измерения параметров, то здесь применяются самые разные методы, включая лазерные технологии.

осмотр колеса

Ремонт балансировочных станков

При интенсивном использовании обнаруживаются неисправности механической или электронной части:

  • наиболее частые механические поломки провоцируются падениями или ударами: выход из строя карданных валов, подшипников, других деталей;
  • электронные поломки связаны с выходом из строя плат питания, управления или датчиков.

Признаки того, что станок нуждается в ремонте:

  • балансировка происходит не с первого раза;
  • некорректно определяется вес диска;
  • некорректно определяется форма диска.

Иногда проблемы решаются калибровкой станка. Тестирование работы производится с помощью эталонного колеса. Станок для балансировки ремонтируется на шиномонтаже или с вывозом в мастерскую.

Общий принцип работы

Как работает балансировочный станок? В общем виде принцип его действия выглядит следующим образом:

  • Для начала работы необходимо установить колесо на специальный рабочий вал станка.
  • При помощи специальных конусов нужно провести центрирование колеса и более точно его установить.
  • Далее либо вручную, либо в автоматическом режиме колесо разгоняется до необходимой скорости.
  • У балансировочного станка имеется специальное измерительное устройство, которое считывает параметры движения колеса на валу. После этого оно передает их на обработку в процессор устройства.
  • Процесс обрабатывает данные, составляет отчет о неисправности или исправности колеса, после чего отчет передается на дисплей.

балансировочный станок

Самодельный станок для балансировки

чертеж станка: 1 — нижняя стойка; 2 — опорный столик; 3 — подшипники; 4 — корпус подшипников; 5 — индикаторная стойка; 6 — индикаторы; 7 — гайка; 8 — вал; 9 — конус; 10 — диск; 11 — упорная шайба; 12 — покрышка; 13 — болты регулировки высоты

  1. Вытачиваем вал, с одного конца подготавливаем места для посадки подшипников, с другого нарезаем резьбу под конус с шайбой упора.
  2. Лучше использовать подшипники, бывшие в употреблении и хорошенько промытые. Они обеспечивают минимальное сопротивление.
  3. Стойка для станка своими руками сваривается из металлической трубы 52 мм. Индикаторы биения закрепляются сверху и сбоку.
  4. Чтобы колесо было удобнее устанавливать, монтируется опорная площадка.

Эксплуатация станка:

  1. Диск фиксируем в станке своими руками, используя гайку и конус;
  2. Раскручиваем и сверяем показания с нормами (горизонтальное должно быть не более 2 г, радиальное не более 1,5 г);
  3. Снимаем все грузики и еще раз проверяем колесо, оно останавливается самой тяжелой точкой книзу, ее нужно отметить;
  4. Отмеченную точку поворачиваем на 90 градусов и на противоположный край навешиваем грузик;
  5. Если при повороте на 45 градусов колесо стоит и не вращается, балансировка своими руками выполнена верно.

Интересные сведения о балансировке колес и ремонте балансировочного станка в видеороликах:

Калибровка

Со временем используемый агрегат начинает давать не совсем точные показания. Проверить его работу можно следующим образом:

  1. Взять колесо, например, 16-го радиуса.
  2. Установить его на станок и ввести требуемые параметры в ручном режиме.
  3. Активировать кнопку пуска.
  4. После обработки выдается результат 25-30. Набиваем грузики и снова запускаем агрегат в работу. Может получиться результат 05-10.
  5. Если после третьего запуска программа просит добавить еще один параметр груза, необходимо проверить конусы на предмет наличия люфтов и их посадку на валу.

Читать также: Подключение выключателя света с одной клавишей legrand

При наличии указанных проблем потребуется обязательная калибровка балансировочных станков. Это можно сделать следующим образом:

  • После доведения параметров программы до показателей 00-00, набивают стограммовый грузик и запускают станок. При нормальной работе параметры должны стать 00-100.
  • Задуматься о калибровке следует при наличии разбежностей в 5 единиц (например, 05-95). На таком агрегате еще можно работать, но потребуется проверить люфты и крепление.
  • Если итоговое значение после запуска вал с контрольным грузиком превышает 15 единиц, необходима срочная калибровка устройства.
  • Если проведенные по выставлению параметров действия не приводят к параметрам 00-100, потребуется провести техническое обслуживание техники, очистить его от загрязнения, замерить сетевое напряжение. Затем проводится повторная калибровка.

Как работать на балансировочном станке

Незаменимый атрибут для сферы услуг

Ранее подобные нюансы решались посредством статического метода. Подразумевается, что колесо надевалось на специальный стержень, после чего его раскручивали. Места остановки отмечались. Для определения участка дисбаланса подобные манипуляции неоднократно повторялись. Для обслуживания одного автотранспортного средства мог уйти весь день. К тому же следует отметить высокий уровень погрешности, который удалось преодолеть спустя годы. Как часто необходимо прибегать к подобным услугам?

По мнению обывателей, если машина регулярно ездит по городским дорогам, то в автосервис необходимо обращаться не реже раза в полугодие. Подобные поездки совпадают с сезонной заменой резины, что позволяет сэкономить. Однако в случае, если автотранспортное средство зачастую ездит по бездорожью или в пригороде, то заезд на станок рекомендуется делать раз в несколько месяц. Балансировка благоприятно сказывается не только на работе «колес», но и:

  1. Коленчатого вала.
  2. Карданного вала.
  3. Компрессоров.
  4. Шкивов.
  5. Муфт.
  6. Роторов.

Речь идет о том, что отладка может быть направлена на функционирование отдельных элементов машины. Как понять, что подобные манипуляции необходимы? Для тех, кто только недавно за рулем, этот вопрос более чем актуален. Чтобы не совершить распространенных ошибок, необходимо обратить внимание на то, как машина идет на скорости, и присутствует ли вибрация в районе руля. Эти звоночки – первые, на что стоит обратить внимание автомобилисту, и в ближайшее время посетить шиномонтажку.

Специалисты советуют делать балансировку после каждого попадания колеса в большую яму. Если удар действительно сильный, и произошла видимая деформация диска, то без стендов попросту не обойтись. Помимо выравнивания поврежденной поверхности, следует прибегнуть к услугам специалистов.

Своевременное обращение к специалистам поможет избежать многих проблем, среди которых:

  1. Ухудшение состояния подвески.
  2. Ускоренный износ подшипников ступицы.
  3. Истирание протекторов шин.
  4. Усиленные нагрузки на рулевое управление.

Главная задача работника шиномонтажа – выявление дисбаланса и устранение его. В этом случае устраняется компенсирующие нагрузки на определенные участки диска. Помимо личного опыта работника, немаловажным критерием является наличие качественного оборудования от лучших мировых производителей. Средняя стоимость работ будет зависеть от диаметра колеса. Сумма в 200 рублей не кажется такой уж большой, в особенности, если речь идет о безопасности себя и окружающих. Какими бывают установки?

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями: