Коэффициент теплопроводности меди: что такое теплопроводность. Какая теплопроводность у меди


Что такое теплопроводность

Данный термин означает способность различных материалов к обмену энергией, которая в этом случае представлена теплом. При этом передача энергии проходит от более нагретой части к холодной и происходит за счет:

  1. Молекул.
  2. Атомов.
  3. Электронов и других частиц структуры металла.

Теплопроводность нержавеющей стали будет существенно отличаться от аналогичного показателя другого металла — например, коэффициент теплопроводности меди будет иным, нежели у стали.

Для обозначения этого показателя используется специальная величина, именуемая коэффициентом теплопроводности. Она характеризуется количеством теплоты, которое может пройти через материал за определенную единицу времени.

Понятие теплопроводности

Она является интенсивной физической величиной, то есть величиной, которая описывает свойство материи, не зависящей от количества последней. Интенсивными величинами также являются температура, давление, электропроводность, то есть эти характеристики одинаковы в любой точке одного и того же вещества. Другой группой физических величин являются экстенсивные, которые определяются количеством вещества, например, масса, объем, энергия и другие.

Противоположной величиной для теплопроводности является теплосопротивляемость, которая отражает способность материала препятствовать переносу проходящего через него тепла. Для изотропного материала, то есть материала, свойства которого одинаковы во всех пространственных направлениях, теплопроводность является скалярной величиной и определяется, как отношение потока тепла через единичную площадь за единицу времени к градиенту температуры. Так, теплопроводность, равная одному ватту на метр-Кельвин, означает, что тепловая энергия в один Джоуль переносится через материал:

  • за одну секунду;
  • через площадь один метр квадратный;
  • на расстояние один метр;
  • когда разница температур на поверхностях, находящихся на расстоянии один метр друг от друга в материале, равна один Кельвин.

Понятно, что чем больше значение теплопроводности, тем лучше материал проводит тепло, и наоборот. Например, значение этой величины для меди равно 380 Вт/(м*К), и этот металл в 10 000 раз лучше переносит тепло, чем полиуретан, теплопроводность которого составляет 0,035 Вт/(м*К).

Свойства меди Cu: теплопроводность и плотность меди

В таблице представлены теплофизические свойства меди в зависимости от температуры в интервале от 50 до 1600 градусов Кельвина.

Плотность меди равна 8933 кг/м3 (или 8,93 г/см3) при комнатной температуре. Медь почти в четыре раза тяжелее алюминия и железа. Эти металлы будут плавать на поверхности жидкой меди. Значения плотности меди в таблице указаны в размерности кг/м3.

Зависимость плотности меди от ее температуры представлена в таблице. Следует отметить, что плотность меди при ее нагревании снижается как у твердого металла, так и у жидкой меди. Уменьшение значения плотности этого металла обусловлено его расширением при нагревании — объем меди увеличивается. Следует отметить, что жидкая медь имеет плотность около 8000 кг/м3 при температурах до 1300°С.

Теплопроводность меди равна 401 Вт/(м·град) при комнатной температуре, что является довольно высоким значением среди металлов, которое сравнимо с теплопроводностью серебра.

При 1357К (1084°С) медь переходит в жидкое состояние, что отражено в таблице резким падением значения коэффициента теплопроводности меди. Видно, что теплопроводность жидкой меди почти в два раза ниже, чем у твердого металла.

Теплопроводность меди при ее нагреве имеет тенденцию к снижению, однако при температуре выше 1400 К, значение теплопроводности снова начинает увеличиваться.

В таблице рассмотрены следующие теплофизические свойства меди при различных температурах:

  • плотность меди, кг/м3;
  • удельная теплоемкость, Дж/(кг·град);
  • температуропроводность, м2/с;
  • теплопроводность меди, Вт/(м·К);
  • удельное электрическое сопротивление, Ом·м;
  • функция Лоренца;
  • отношение теплоемкостей.

Теплопроводность стали, меди, алюминия, никеля и их сплавов

Обычное железо и цветные металлы имеют разное строение молекул и атомов. Это позволяет им отличаться друг от друга не только механическими, но и свойствами теплопроводности, что, в свою очередь, влияет на применение тех или иных металлов в различных отраслях хозяйства.

Таблица 2

таблица теплопроводности металлов

Сталь имеет коэффициент теплопроводности, при температуре окружающей среды 0 град. (С), равный 63, а при увеличении градуса до 600, он снижается до 21 Вт/м*град. Алюминий, в таких же условиях, наоборот – увеличит значение от 202 до 422 Вт/м*град. Сплавы из алюминия, будут также повышать теплопроводность, по мере увеличения температуры. Только величина коэффициента будет на порядок ниже, в зависимости от количества примесей, и колебаться в пределах от 100 до 180 единиц.

Медь, при изменении температуры в тех же пределах, будет уменьшать теплопроводность от 393 до 354 Вт/м*град. При этом, медь содержащие сплавы латуни будут иметь такие же свойства, как и алюминиевые, а значение теплопроводности будет изменяться от 100 до 200 единиц, в зависимости от количества цинка и других примесей в составе сплава латуни.

Коэффициент теплопроводности чистого никеля считается низким, он будет менять свое значение от 67 до 57 Вт/м*град. Сплавы с содержанием никеля, будут также иметь коэффициент с пониженным значением, который, благодаря содержанию железа и цинка, колеблется от 20 до 50 Вт/м*град. А наличие хрома, позволит понизить теплопроводность в металлах до 12 единиц, с небольшим увеличением этой величины, при нагреве.

Плюсы и минусы алюминиевых радиаторов

Сравнивая сильные и слабые стороны устройств, можно понять их основные отличия. Ведь разница между медным и алюминиевым радиаторами заключается в их основных характеристиках. То, что у одного считается объективным достоинством, для другого оказывается серьёзным недостатком. Просто посмотрите на плюсы минусы алюминиевых изделий, и вы поймёте, в чём разница между ними.

Начнём с положительных сторон алюминия, как материала для изготовления радиаторов печки автомобиля.

  1. Цена. Если у медных радиаторов стоимость относилась к недостаткам, то здесь это серьёзное преимущество. Если сравнивать ценники на оба изделия, алюминиевые будут выигрывать примерно в 2 раза. Многое зависит от производителя, но всё же разница в стоимости остаётся существенной. Покупатель может значительно сэкономить. Из-за этого в основном у алюминиевых агрегатов такая большая аудитория.
  2. Теплоотдача. При условии, что количество пластин будет увеличено, то есть площадь охлаждения станет больше, алюминий мало чем уступит меди по показателям теплоотдачи. Потому в этом компоненте они практически одинаковые. Но напомним, что алюминиевые стоят дешевле.
  3. Ассортимент. Огромная доля современных машин, которые выпускаются последние несколько лет, с завода комплектуются именно алюминиевыми агрегатами. Из-за этого растёт количество их аналогов и оригинальных запчастей, предлагаемых разными производителями. У медных версий выбор более скромный.

С преимуществами закончили. Переходим к обратной стороне медали. У алюминия не всё так хорошо. Озвученные преимущества не поддаются сомнению. Но всё же выбор в пользу меди автомобилисты делают после того, как изучат основные недостатки рассматриваемого варианта конструкции.

Потому на минусы следует обязательно указать. Это наглядно показывает различия между элементами. К основным недостаткам относят:

  1. Показатели теплопроводности. Это очень важный недостаток, который буквально перечёркивает все объективные положительные качества устройств. Если водителю нужно получить максимально эффективный радиатор, чтобы отопительная система работала качественно и полноценно прогревала салон, в сторону алюминия он смотреть не будет.
  2. Пригодность к ремонту

Примерно такие выводы можно сделать относительно этих устройств, изготавливаемых из двух разных материалов.

Что лучше проводит тепло алюминий или медь

Что лучше проводит тепло алюминий или медь?

На сегодняшний день радиаторы производятся из разнообразных материалов, наиболее распространенные, из которых сталь, нержавеющая сталь и алюминий.

Всегда есть сомнения, какой именно радиатор выбрать для установки в доме? Очевидно, что это зависит от личного вкуса, а также от требований, которые вы поставили перед собой к качеству отопления помещения.

Алюминий, безусловно, является самым экологичным материалом и имеет огромное количество преимуществ.

Различия между медью и алюминием

Основные беспокойства по поводу выбора материала обмотки отражают пять характерных различий между медью и алюминием:

Таблица : Пять характерных различий между медью и алюминием

ПараметрАлюминийМедь
Коэффициент расширения на ° С х 10 -6 при 20 ° С2316,6
Теплопроводность БТЕ / фут / ч / БПФ 2 / ° F при 20 ° С126222
Электропроводность % при 20 ° С61101
Прочность на разрыв н/мм 2 (мягкая)28-4240

Как выбрать радиатор отопления: советы специалистов

В этой статье мы не будем рассматривать чугунные радиаторы, т.к. они теряют популярность среди покупателей.

Сосредоточим внимание на самых востребованных моделях.

Материал в деталях расскажет о преимуществах алюминиевых и стальных батарей.

Алюминиевые радиаторы имеют малый вес

Алюминиевые радиаторы легче, чем традиционные стальные или чугунные радиаторы, этот факт дает возможность расположить такой радиатор на любой стене в помещении.

Батареи из алюминия можно повесить на стену, даже в ситуациях, когда толщина не позволяет сделать глубокого закрепления.

Это существенно экономит затраты на оплату строительных работ, так как повесить их можно очень быстро и надежно.

Алюминий — коррозионностойкий материал

Алюминий не подвержен коррозии, что делает его идеальным материалом для производства радиаторов, которые предполагается устанавливать в таких помещениях, как ванные комнаты и кухни, где выоская влажность.

Это интересно: Уголок равнополочный ГОСТ 8509 93. Задающий сортамент уголка

Алюминий хорошо проводит тепло

Алюминий быстро нагревается, что делает его отличным проводником тепла.

Алюминиевые радиаторы имеют низкое содержание воды, а это означает, что после включения такие устройства дают интенсивный всплеск тепла и нагревают помещения довольно быстро.

Установив алюминиевые радиаторы можно быстро достичь требуемой температуры в комнатах, так как они имеют наименьшее время отклика.

Главным преимуществом является существенная экономия энергетических затрат в отопительный сезон и как прекрасный бонус – экономия денежных средств, так как алюминиевые радиаторы можно выключать на время вашего отсутствия в доме, а вернувшись домой включить и быстро получить теплый дом не тратя на ожидание длительное время.

Алюминиевые радиаторы имеют широкий диапазон конструкций и цветов

Бытует распространенное мнение, что эффективное тепло не может быть красивым и оригинальным. К счастью, времена, когда дизайн должен уступить свои позиции отличной эффективности, прошли.

Алюминиевые радиаторы имеют разнообразный ряд конструкций и предлагают даже самому требовательному покупателю достойный выбор.

Вы можете выбрать свой собственный цвет финишного покрытия, которое идеально будет соответствовать стилю вашего дома, форма радиатора будет гармонировать с вашей домашней или офисной атмосферой на сто процентов.

Нержавеющая сталь

Использование стали для производства теплообменников позволяет получить прочные изделия, которые в основном используются для систем индивидуального отопления домов и коттеджей.

По причине возможности контроля качества теплоносителя и давления в системе, стальные приборы станут отличном выбором для систем автономного отопления.

При условии подачи качественного теплоносителя и умеренного давления рабочей жидкости, такие устройства прослужат более 30 лет.

Возможность соединения

Оксиды, хлориды, сульфиды или недрагоценные металлы, более проводящие на меди, чем алюминии. Этот факт делает очистку и защиту соединителей для алюминия более важной. Некоторые считают соединения меди с алюминием несовместимыми. Также под вопросом сопряжение соединений между алюминием трансформаторов и медным проводом присоединения.

Коэффициент расширения

При изменении температуры алюминий расширяется почти на треть больше, чем медь. Это расширение, наряду с пластичным характером алюминия, вызывает некоторые проблемы для ненадлежаще установленных болтовых соединений.

Чтобы избежать ослабления соединения, необходимо его подпружинивание. Используя либо чашевидные или прижимные шайбы можно обеспечить необходимую эластичность при сочленении, без сжатия алюминия.

При использовании надлежащей арматуры алюминиевые соединения, могут быть равными по качеству медным.

Теплопроводность

Некоторые утверждают, что поскольку, теплопроводность меди выше, чем алюминия то это оказывает влияние на снижение хот-спот температуры обмотки трансформатора.

Это верно только тогда, когда проводники обмоток из меди и алюминия одинакового размера, геометрии и дизайна.

Следовательно, для любого силового трансформатора заданного размера, тепловые характеристики теплопроводности алюминия могут быть очень близки меди.

Характеристика теплопроводности материалов

Понятие теплопроводности материалов характеризуется способностью переносить тепловую энергию в пределах определенного объекта от нагретых частей к холодным. Процесс осуществляется атомами, молекулами, электронами и происходит в любых телах с неравномерным распределением температуры.

С позиций кинетической физики этот процесс происходит в результате взаимодействия частиц молекул более нагретых участков в пределах образца с другими элементами, отличающимися низшей температурой. Механизм и скорость переноса теплоты зависит от агрегатного состояния вещества.

Категория теплопроводности предусматривает определение скорости нагревания образца материала и перемещение температурной волны в определенном направлении. Показатель зависит от физических параметров:

  • плотности;
  • температуры фазового перехода в жидкое состояние
  • скорости распространения звука (для диэлектриков).

Теплопроводность латуни и бронзы

В таблице приведены значения теплопроводности латуни, бронзы, а также медно-никелевых сплавов (константана, копели, манганина и др.) в зависимости от температуры — в интервале от 4 до 1273 К.

Теплопроводность латуни, бронзы и других сплавов на основе меди при нагревании увеличивается. По данным таблицы, наибольшей теплопроводностью из рассмотренных сплавов при комнатной температуре обладает латунь Л96. Ее теплопроводность при температуре 300 К (27°С) равна 244 Вт/(м·град).

Также к медным сплавам с высокой теплопроводностью можно отнести: латунь ЛС59-1, томпак Л96 и Л90, томпак оловянистый ЛТО90-1, томпак прокатный РТ-90. Кроме того, теплопроводность латуни в основном выше теплопроводности бронзы. Следует отметить, что к бронзам с высокой теплопроводностью относятся: фосфористая, хромистая и бериллиевая бронзы, а также бронза БрА5.

Медным сплавом с наименьшей теплопроводностью является марганцовистая бронза — ее коэффициент теплопроводности при температуре 27°С равен 9,6 Вт/(м·град).

Теплопроводность медных сплавов всегда ниже теплопроводности чистой меди при прочих равных условиях. Кроме того, теплопроводность медно-никелевых сплавов имеет особенно низкое значение. Самым теплопроводным из них при комнатной температуре является мельхиор МНЖМц 30-0,8-1 с теплопроводностью 30 Вт/(м·град).

Таблица теплопроводности латуни, бронзы и медно-никелевых сплавовСплавТемпература, КТеплопроводность, Вт/(м·град)Медно-никелевые сплавыЛатуньБронза

Бериллиевая медь300111
Константан зарубежного производства4…10…20…40…80…3000,8…3,5…8,8…13…18…23
Константан МНМц40-1,5273…473…573…67321…26…31…37
Копель МНМц43-0,5473…127325…58
Манганин зарубежного производства4…10…40…80…150…3000,5…2…7…13…16…22
Манганин МНМц 3-12273…57322…36
Мельхиор МНЖМц 30-0,8-130030
Нейзильбер300…400…500…600…70023…31…39…45…49
Автоматная латунь UNS C36000300115
Л62300…600…900110…160…200
Л68 латунь деформированная80…150…300…90071…84…110…120
Л80 полутомпак300…600…900110…120…140
Л90273…373…473…573…673…773…873114…126…142…157…175…188…203
Л96 томпак волоченый300…400…500…600…700…800244…245…246…250…255…260
ЛАН59-3-2 латунь алюминиево-никелевая300…600…90084…120…150
ЛМЦ58-2 латунь марганцовистая300…600…90070…100…120
ЛО62-1 оловянистая30099
ЛО70-1 оловянистая300…60092…140
ЛС59-1 латунь отожженая4…10…20…40…80…3003,4…10…19…34…54…120
ЛС59-1В латунь свинцовистая300…600…900110…140…180
ЛТО90-1 томпак оловянистый300…400…500…600…700…800…900124…141…157…174…194…209…222
БрА5300…400…500…600…700…800…900105…114…124…133…141…148…153
БрА7300…400…500…600…700…800…90097…105…114…122…129…135…141
БрАЖМЦ10-3-1,5300…600…80059…77…84
БрАЖН10-4-4300…400…50075…87…97
БрАЖН11-6-6300…400…500…600…700…80064…71…77…82…87…94
БрБ2, отожженая при 573К4…10…20…40…802,3…5…11…21…37
БрКд293340
БрКМЦ3-1300…400…500…600…70042…50…55…54…54
БрМЦ-5300…400…500…600…70094…103…112…122…127
БрМЦС8-20300…400…500…600…700…800…90032…37…43…46…49…51…53
БрО10300…400…50048…52…56
БрОС10-10300…400…600…80045…51…61…67
БрОС5-25300…400…500…600…700…800…90058…64…71…77…80…83…85
БрОФ10-1300…400…500…600…700…800…90034…38…43…46…49…51…52
БрОЦ10-2300…400…500…600…700…800…90055…56…63…68…72…75…77
БрОЦ4-3300…400…500…600…700…800…90084…93…101…108…114…120…124
БрОЦ6-6-3300…400…500…600…700…800…90064…71…77…82…87…91…93
БрОЦ8-4300…400…500…600…700…800…90068…77…83…88…93…96…100
Бронза алюминиевая30056
Бронза бериллиевая состаренная20…80…150…30018…65…110…170
Бронза марганцовистая3009,6
Бронза свинцовистая производственная30026
Бронза фосфористая 10%30050
Бронза фосфористая отожженая20…80…150…3006…20…77…190
Бронза хромистая UNS C18200300171

Характеристики металла

Температура плавки латуни в зависимости от состава колеблется в пределах 880-950°C. Таким образом, при увеличении примеси цинка в рассматриваемом материале температура плавления будет понижаться. Стоит отметить, что латунь благодаря своим свойствам способна хорошо свариваться.

Латунь обрабатывается путем контактной сварки, может прокатываться. Не покрытые поверхности рассматриваемого металла при контакте с воздухом чернеют. Латунь имеет желтый цвет, при этом отлично полируется. Расплавить рассматриваемый цветной металл можно при определенных температурных пределах, зависящих от примесей в составе материала.

Технические характеристики металла

  • Температура плавления – 880-950°C;
  • Плотность материала – 8 300-8 700 кг/кубический метр;
  • Удельная теплоемкость — 0,377 кДж·кг−1·K−1 при 20°C;
  • Удельное электрическое сопротивление — (0,07-0,08)·10−6 Ом·м.

Полезно знать, что висмут, а также свинец оказывают вредное сопротивление на латунь, поскольку уменьшают способность к деформированию в горячем состоянии.

Каковы преимущества цветного металла, марки и применение?

Латунь относится к разряду цветных металлов. Полезно знать о химических и физических преимуществах, коими обладает латунь.

Преимущества

  • Коррозийная стойкость;
  • Высокая степень жидкотекучести;
  • Отличные антифрикционные свойства;
  • Незначительная склонность к ликвации;
  • Отличные технологические свойства;
  • Отличные механические свойства.

Это интересно: Азотирование стали: технология процесса, оборудование

На списке, представленном выше, преимущества и выгодные свойства данного металла не ограничиваются. Не следует обходить вниманием наиболее популярные марки материала, а также применение.

Температура плавления латуни

Температура плавления латуни рассмотренных марок изменяется в интервале от 865 до 1055 °С. Наиболее легкоплавкой является марганцовистая латунь ЛМц58-2 с температурой плавления 865°С. Также к легкоплавким латуням можно отнести: Л59, Л62, ЛАН59-3-2, ЛКС65-1,5-3 и другие.

Наибольшую температуру плавления имеет латунь Л96 (1055°С). Среди тугоплавких латуней по данным таблицы можно также выделить: латунь Л90, ЛА85-0,5, томпак оловянистый ЛТО90-1.

Температура плавления латуниЛатуньt, °СЛатуньt, °С

Л59885ЛМц55-3-1930
Л62898ЛМц58-2 латунь марганцовистая865
Л63900ЛМцА57-3-1920
Л66905ЛМцЖ52-4-1940
Л68 латунь деформированная909ЛМцОС58-2-2-2900
Л70915ЛМцС58-2-2900
Л75980ЛН56-3890
Л80 полутомпак965ЛН65-5960
Л85990ЛО59-1885
Л901025ЛО60-1885
Л96 томпак волоченый1055ЛО62-1 оловянистая885
ЛА67-2,5995ЛО65-1-2920
ЛА77-2930ЛО70-1 оловянистая890
ЛА85-0,51020ЛО74-3885
ЛАЖ60-1-1904ЛО90-1995
ЛАЖМц66-6-3-2899ЛС59-1900
ЛАН59-3-2 латунь алюминиево-никелевая892ЛС59-1В латунь свинцовистая900
ЛАНКМц75-2-2,5-0,5-0,5940ЛС60-1900
ЛЖМц59-1-1885ЛС63-3885
ЛК80-3900ЛС64-2910
ЛКС65-1,5-3870ЛС74-3965
ЛКС80-3-3900ЛТО90-1 томпак оловянистый1015

Температура плавления бронзы

Температура плавления бронзы находится в диапазоне от 854 до 1135°С. Наибольшей температурой плавления обладает бронза АЖН11-6-6 — она плавится при температуре 1408 К (1135°С). Температура плавления этой бронзы даже выше, чем температура плавления меди, которая составляет 1084,6°С.

К бронзам с невысокой температурой плавления можно отнести: БрОЦ8-4, БрБ2, БрМЦС8-20, БрСН60-2,5 и подобные.

Температура плавления бронзыБронзаt, °СБронзаt, °С

БрА51056БрОС8-12940
БрА71040БрОСН10-2-31000
БрА101040БрОФ10-1934
БрАЖ9-41040БрОФ4-0.251060
БрАЖМЦ10-3-1,51045БрОЦ10-21015
БрАЖН10-4-41084БрОЦ4-31045
БрАЖН11-6-61135БрОЦ6-6-3967
БрАЖС7-1,5-1,51020БрОЦ8-4854
БрАМЦ9-21060БрОЦС3,5-6-5980
БрБ2864БрОЦС4-4-17920
БрБ2,5930БрОЦС4-4-2,5887
БрКМЦ3-1970БрОЦС5-5-5955
БрКН1-31050БрОЦС8-4-31015
БрКС3-41020БрОЦС3-12-51000
БрКЦ4-41000БрОЦСН3-7-5-1990
БрМГ0,31076БрС30975
БрМЦ51007БрСН60-2,5885
БрМЦС8-20885БрСУН7-2950
БрО101020БрХ0,51073
БрОС10-10925БрЦр0,4965
БрОС10-5980Кадмиевая1040
БрОС12-7930Серебряная1082
БрОС5-25899Сплав ХОТ1075

Примечание: температура плавления и кипения других распространенных металлов приведена в этой таблице.

Теплопроводность цветных металлов и технических сплавов

В таблице представлены значения теплопроводности металлов (цветных), а также химический состав металлов и технических сплавов в интервале температуры от 0 до 600°С.

Цветные металлы и сплавы: никель Ni, монель, нихром; сплавы никеля (по ГОСТ 492-58): мельхиор НМ81, НМ70, константан НММц 58,5-1,54, копель НМ 56,5, монель НМЖМц и К-монель, алюмель, хромель, манганин НММц 85-12, инвар; магниевые сплавы (по ГОСТ 2856-68), электрон, платинородий; мягкие припои (по ГОСТ 1499-70): олово чистое, свинец, ПОС-90, ПОС-40, ПОС-30, сплав Розе, сплав Вуда.

По данным таблицы видно, что высокую теплопроводность (при комнатной температуре) имеют магниевые сплавы и никель. Низкая же теплопроводность свойственна нихрому, инвару и сплаву Вуда.

Коэффициенты теплопроводности сплавов

В таблице даны значения теплопроводности сплавов в интервале температуры от 20 до 200ºС. Сплавы: алюминиевая бронза, бронза, бронза фосфористая, инвар, константан, манганин, магниевые сплавы, медные сплавы, сплав Розе, сплав Вуда, никелевые сплавы, никелевое серебро, платиноиридий, сплав электрон, платинородий.

Коэффициент теплопроводности других материалов

МатериалВлажностьмассовая доля % Вт/(м•К)

Бакелитовый лак0,29
Бетон с каменным щебнем81,28
Бумага обыкновеннаяВоздушно-сухая0,14
Винипласт0,13
ГравийВоздушно-сухая0,36
Гранит3,14
Глина15-200,7-0,93
Дуб (вдоль волокон)6-80,35-0,43
Дуб (поперек волокон)6-80,2-0,21
Железобетон81,55
КартонВоздушно-сухая0,14-0,35
Кирпичная кладкаВоздушно-сухая0,67-0,87
Кожа>>0,14-0,16
Лед2,21
Пробковые плиты0,042-0,054
Снег свежевыпавший0,105
Снег уплотненный0,35
Снег начавший таять0,64
Сосна (вдоль волокон)80,35-0,41
Сосна (поперек волокон)80,14-0,16
Стекло (обыкновенное)0,74
Фторопласт-30,058
Фторопласт-40,233
Шлакобетон130,698
Штукатурка6-80,791

Коэффициент теплопроводности асбеста и пенобетона при различных температурах

(ρa=576кг/м3, ρп=400кг/м3,λ, Вт/(м•К))

Материал-18oС0oС50oС100oС150oС

Асбест0,150,180,1950,20
Пенобетон0,10,110,110,130,17

Коэффициент теплопроводности жидкости Вт/(м•К) при различных температурах

Материал0oС50oС100oС

Анилин0,190,1770,167
Ацетон0,170,160,15
Бензол0,1380,126
Вода0,5510,6480,683
Масло вазелиновое0,1260,1220,119
Масло касторовое0,1840,1770,172
Спирт метиловый0,2140,207
Спирт этиловый0,1880,177
Толуол0,1420,1290,119

Удельное сопротивление и температурный коэффициент расширения (КТР) металлической проволоки (при 18ºС)

В таблице указаны значения удельного электрического сопротивления и КТР металлической проволоки, выполненной из различных металлов и сплавов. Материал проволоки: алюминий, вольфрам, железо, золото, латунь, манганин, медь, никель, константан, нихром, олово, платина, свинец, серебро, цинк. Как видно из таблицы, нихромовая проволока имеет высокое удельное электрическое сопротивление и успешно применяется в качестве спиралей накаливания нагревательных элементов множества бытовых и промышленных устройств.

Удельная теплоемкость многокомпонентных специальных сплавов

Удельная (массовая) теплоемкость многокомпонентных специальных сплавов приведена в таблице при температуре от 0 до 1300ºС.

Размерность теплоемкости кал/(г·град). Теплоемкость специальных сплавов: алюмель, белл-металл, сплав Вуда, инвар, липовица сплав, манганин, монель, сплав Розе, фосфористая бронза, хромель, сплав Na-K, сплав Pb — Bi, Pb — Bi — Sn, Zn — Sn — Ni — Fe — Mn.

Таблица теплопроводности теплоизоляционных материалов

Чтобы в доме было проще сохранять тепло зимой и прохладу летом, теплопроводность стен, пола и кровли должна быть не менее определенной цифры, которая рассчитывается для каждого региона. Состав «пирога» стен, пола и потолка, толщина материалов берутся с таким учетом чтобы суммарная цифра была не меньше (а лучше — хоть немного больше) рекомендованной для вашего региона.

Что такое теплопроводность и термическое сопротивление, формула расчета теплового сопротивления 3 79 Строительный портал
Коэффициент теплопередачи материалов современных строительных материалов для ограждающих конструкций

При выборе материалов надо учесть, что некоторые из них (не все) в условиях повышенной влажности проводят тепло гораздо лучше. Если при эксплуатации возможно возникновение такой ситуации на продолжительный срок, в расчетах используют теплопроводность для этого состояния. Коэффициенты теплопроводности основных материалов, которые используются для утепления, приведены в таблице.

Наименование материала Коэффициент теплопроводности Вт/(м·°C)
В сухом состоянии При нормальной влажности При повышенной влажности
Войлок шерстяной 0,036-0,041 0,038-0,044 0,044-0,050
Каменная минеральная вата 25-50 кг/м3 0,036 0,042 0,,045
Каменная минеральная вата 40-60 кг/м3 0,035 0,041 0,044
Каменная минеральная вата 80-125 кг/м3 0,036 0,042 0,045
Каменная минеральная вата 140-175 кг/м3 0,037 0,043 0,0456
Каменная минеральная вата 180 кг/м3 0,038 0,045 0,048
Стекловата 15 кг/м3 0,046 0,049 0,055
Стекловата 17 кг/м3 0,044 0,047 0,053
Стекловата 20 кг/м3 0,04 0,043 0,048
Стекловата 30 кг/м3 0,04 0,042 0,046
Стекловата 35 кг/м3 0,039 0,041 0,046
Стекловата 45 кг/м3 0,039 0,041 0,045
Стекловата 60 кг/м3 0,038 0,040 0,045
Стекловата 75 кг/м3 0,04 0,042 0,047
Стекловата 85 кг/м3 0,044 0,046 0,050
Пенополистирол (пенопласт, ППС) 0,036-0,041 0,038-0,044 0,044-0,050
Экструдированный пенополистирол (ЭППС, XPS) 0,029 0,030 0,031
Пенобетон, газобетон на цементном растворе, 600 кг/м3 0,14 0,22 0,26
Пенобетон, газобетон на цементном растворе, 400 кг/м3 0,11 0,14 0,15
Пенобетон, газобетон на известковом растворе, 600 кг/м3 0,15 0,28 0,34
Пенобетон, газобетон на известковом растворе, 400 кг/м3 0,13 0,22 0,28
Пеностекло, крошка, 100 – 150 кг/м3 0,043-0,06
Пеностекло, крошка, 151 – 200 кг/м3 0,06-0,063
Пеностекло, крошка, 201 – 250 кг/м3 0,066-0,073
Пеностекло, крошка, 251 – 400 кг/м3 0,085-0,1
Пеноблок 100 – 120 кг/м3 0,043-0,045
Пеноблок 121- 170 кг/м3 0,05-0,062
Пеноблок 171 – 220 кг/м3 0,057-0,063
Пеноблок 221 – 270 кг/м3 0,073
Эковата 0,037-0,042
Пенополиуретан (ППУ) 40 кг/м3 0,029 0,031 0,05
Пенополиуретан (ППУ) 60 кг/м3 0,035 0,036 0,041
Пенополиуретан (ППУ) 80 кг/м3 0,041 0,042 0,04
Пенополиэтилен сшитый 0,031-0,038
Вакуум 0
Воздух +27°C. 1 атм 0,026
Ксенон 0,0057
Аргон 0,0177
Аэрогель (Aspen aerogels) 0,014-0,021
Шлаковата 0,05
Вермикулит 0,064-0,074
Вспененный каучук 0,033
Пробка листы 220 кг/м3 0,035
Пробка листы 260 кг/м3 0,05
Базальтовые маты, холсты 0,03-0,04
Пакля 0,05
Перлит, 200 кг/м3 0,05
Перлит вспученный, 100 кг/м3 0,06
Плиты льняные изоляционные, 250 кг/м3 0,054
Полистиролбетон, 150-500 кг/м3 0,052-0,145
Пробка гранулированная, 45 кг/м3 0,038
Пробка минеральная на битумной основе, 270-350 кг/м3 0,076-0,096
Пробковое покрытие для пола, 540 кг/м3 0,078
Пробка техническая, 50 кг/м3 0,037

Часть информации взята нормативов, которые прописывают характеристики определенных материалов (СНиП 23-02-2003, СП 50.13330.2012, СНиП II-3-79* (приложение 2)). Те материал, которые не прописаны в стандартах, найдены на сайтах производителей. Так как стандартов нет, у разных производителей они могут значительно отличаться, потому при покупке обращайте внимание на характеристики каждого покупаемого материала.

Понятие термического сопротивления и коэффициента теплопроводности

Если теплопроводность характеризует способность металлов передавать температуру тел от одной поверхности к иной, то термическое сопротивление показывает обратную зависимость, т.е. возможность металлов препятствовать такой передаче, иначе выражаясь, – сопротивляться. Высоким термическим сопротивлением обладает воздух. Именно он, больше всего, препятствует передаче тепла между телами.

Количественную характеристику изменения температуры единицы площади за единицу времени на один градус (К), называют коэффициентом теплопроводности. Международной системой единиц принято измерять этот параметр в Вт/м*град. Эта характеристика очень важна при выборе металлических изделий, которые должны передавать тепло от одного тела к другому.

МеталлКоэффициент теплопроводности металлов при температура, °С
— 100100300700
Алюминий2,452,382,302,260,9
Бериллий4,12,31,71,250,9
Ванадий0,310,34
Висмут0,110,080,070,110,15
Вольфрам2,051,901,651,451,2
Гафний0,220,21
Железо0,940,760,690,550,34
Золото3,33,13,1
Индий0,25
Иридий1,511,481,43
Кадмий0,960,920,900,950,44 (400°)
Калий0,990,420,34
Кальций0,98
Кобальт0,69
Литий0,710,73
Магний1,61,51,51,45
Медь4,053,853,823,763,50
Молибден1,41,431,04 (1000°)
Натрий1,351,350,850,760,60
Никель0,970,910,830,640,66
Ниобий0,490,490,510,56
Олово0,740,640,600,33
Палладий0,690,670,74
Платина0,680,690,720,760,84
Рений0,71
Родий1,541,521,47
Ртуть0,330,090.10,115
Свинец0,370,350,3350,3150,19
Серебро4,224,184,173,62
Сурьма0,230,180,170,170,21
Таллий0,410,430,490,25 (400 0)
Тантал0,540,54
Титан0,160,15
Торий0,410,390,400,45
Уран0,240,260,310,40
Хром0,860,850,800,63
Цинк1,141,131,091,000,56
Цирконий0,210,200,19

Это интересно: Что такое шабрение? Особенности и где это применяется?

От чего зависит показатель теплопроводности

Изучая способность передачи тепла металлическими изделиями выявлено, что теплопроводность зависит от:

  • вида металла;
  • химического состава;
  • пористости;
  • размеров.

Металлы имеют различное строение кристаллической решетки, а это может изменить теплопроводность материала. Так, например, у стали и алюминия, особенности строения микрочастиц влияют по-разному на скорость передачи тепловой энергии через них.

Коэффициент теплопроводности может иметь различные значения для одного и того же металла при изменении температуры воздействия. Это связано с тем, что у разных металлов градус плавления отличается, а значит, при других параметрах окружающей среды, свойства материалов также будут отличаться, а это отразится на теплопроводности.

Недостатки высокой теплопроводности меди и ее сплавов

Медь обладает куда более высокой стоимостью, чем латунь или алюминий. При этом у данного металла есть свои недостатки, напрямую связанные с его достоинствами. Высокая теплопроводность приводит к необходимости создавать специальные условия во время резки, сварки и пайки медных элементов. Так как нагревать медные элементы нужно намного более концентрировано по сравнению со сталью. Также часто требуется предварительный и сопутствующий подогрев детали.

Не стоит забывать и о том, что медные трубы требуют тщательной изоляции в том случае, если из них состоит магистраль или разводка системы отопления. Что приводит к увеличению стоимости монтажа сети в сравнении с вариантами, когда применяются другие материалы.

Пример теплоизоляции медных труб

Пример теплоизоляции медных труб

Сложности возникают и с газовой сваркой меди: для этого процесса потребуются более мощные горелки. При сварке металла толщиной 8–10 мм потребуются две-три горелки. Пока одна горелка используется для сварки, другими ведется подогрев детали. В целом сварочные работы с медью требуют повышенных расходов на расходные материалы.

Следует сказать и о необходимости использования специальных инструментов. Так, для резки латуни и бронзы толщиной до 15 см понадобится резак, способный работать с высокохромистой сталью толщиной в 30 см. Причем этого же инструмента хватит для работы с чистой медью толщиной всего лишь в 5 см.

Факторы, влияющие на физическую величину

Способность проводить тепло зависит от ряда факторов, включая температуру, структуру и электрические свойства вещества.

Температура материала


Влияние температуры на способность проводить тепло различается для металлов и неметаллов. В металлах проводимость главным образом связана со свободными электронами. Согласно закону Видемана—Франца теплопроводность металла пропорциональна произведению абсолютной температуры, выраженной в Кельвинах, на его электропроводность. В чистых металлах с увеличением температуры уменьшается электропроводность, поэтому теплопроводность остается приблизительно постоянной величиной. В случае сплавов электропроводность мало изменяется с ростом температуры, поэтому теплопроводность сплавов растет пропорционально температуре.

С другой стороны, передача тепла в неметаллах главным образом связана с колебаниями решетки и обмене решеточными фононами. За исключением кристаллов высокого качества и низких температур, путь пробега фононов в решетке значительно не уменьшается при высоких температурах, поэтому и теплопроводность остается постоянной величиной во всем температурном диапазоне, то есть является незначительной. При температурах ниже температуры Дебая способность неметаллов проводить тепло, наряду с их теплоемкостью, значительно уменьшается.

Фазовые переходы и структура

Когда материал испытывает фазовый переход первого рода, например, из твердого состояния в жидкое или из жидкого в газ, то его теплопроводность может измениться. Ярким примером такого изменения является разница этой физической величины для льда (2,18 Вт/(м*К) и воды (0,90 Вт/(м*К).

Изменения кристаллической структуры материалов также влияют на теплопроводность, что объясняется анизотропными свойствами различных аллотропных модификаций вещества одного и того же состава. Анизотропия влияет на различную интенсивность рассеивания решеточных фононов, основных переносчиков тепла в неметаллах, и в различных направлениях в кристалле. Здесь ярким примером является сапфир, проводимость которого изменяется от 32 до 35 Вт/(м*К) в зависимости от направления.

Электрическая проводимость

Теплопроводность в металлах изменяется вместе с электропроводностью согласно закону Видемана—Франца. Это связано с тем, что валентные электроны, свободно перемещаясь по кристаллической решетке металла, переносят не только электрическую, но и тепловую энергию. Для других материалов корреляция между этими типами проводимости не является ярко выраженной, ввиду незначительного вклада электронной составляющей в теплопроводность (в неметаллах основную роль в механизме передачи тепла играют решеточные фононы).

Процесс конвекции

Воздух и другие газы являются, как правило, хорошими теплоизоляторами при отсутствии процесса конвекции. На этом принципе основана работа многих теплоизолирующих материалов, содержащих большое количество небольших пустот и пор. Такая структура не позволяет конвекции распространяться на большие расстояния. Примерами таких материалов, полученных человеком, являются полистирен и силицидный аэрогель. В природе на том же принципе работают такие теплоизоляторы, как шкура животных и оперение птиц.

Легкие газы, например, водород и гель, имеют высокие значения теплопроводности, а тяжелые газы, например, аргон, ксенон и радон, являются плохими проводниками тепла. Например, аргон, инертный газ, который тяжелее воздуха, часто используется в качестве теплоизолирующего газового наполнителя в двойных окнах и в электрических лампочках. Исключением является гексафторид серы (элегаз), который является тяжелым газом и обладает относительно высокой теплопроводностью, ввиду его большой теплоемкости.

Методы измерения

Для измерения теплопроводности металлов используют два метода: стационарный и нестационарный. Первый характеризуется достижением постоянной величины изменившейся температуры на контролируемой поверхности, а второй – при частичном изменении таковой.

Стационарное измерение проводится опытным путем, требует большого количества времени, а также применения исследуемого металла в виде заготовок правильной формы, с плоскими поверхностями. Образец располагают между нагретой и охлажденной поверхностью, а после прикосновения плоскостей, измеряют время, за которое заготовка может увеличить температуру прохладной опоры на один градус по Кельвину. Когда рассчитывают теплопроводность, обязательно учитывают размеры исследуемого образца.

Нестационарную методику исследований используют в редких случаях из-за того, что результат, зачастую, бывает необъективным. В наши дни никто, кроме ученых, не занимается измерением коэффициента, все используют, давно выведенные опытным путем, значения для различных материалов. Это обусловлено постоянством данного параметра при сохранении химического состава изделия.

Можно ли повысить теплопроводность меди?

Медь широко используется при создании микросхем электронных устройств и призвана отводить тепло от нагреваемых электрическим током деталей. При попытке увеличить быстродействие современных компьютеров разработчики столкнулись с проблемой охлаждения процессоров и других деталей. В качестве одного из решений применялся вариант разбиения процессора на несколько ядер. Однако данный способ борьбы с перегревом себя исчерпал, и сейчас требуется искать новые проводники с более высокой теплопроводностью и электропроводимостью.

Одним из решений этой проблемы является недавно открытый элемент графен. Благодаря напылению из графена теплопроводность медного элемента увеличивается на 25%. Однако пока изобретение находится на уровне разработки.

Значение в быту и производстве

Почему важно учитывать коэффициент теплопроводности? Подобное значение указывается в различных таблицах для каждого металла и учитывается в нижеприведенных случаях:

  1. При изготовлении различных теплообменников. Тепло является одним из важных носителей энергии. Его используют для обеспечения комфортных условий проживания в жилых и иных помещениях. При создании отопительных радиаторов и бойлеров важно обеспечить быструю и полную передачу тепла от теплоносителя к конечному потребителю.
  2. При изготовлении отводящих элементов. Часто можно встретить ситуацию, когда нужно провести не подачу тепла, а отвод. Примером назовем случай отвода тепла от режущей кромки инструмента или зубьев шестерни. Для того чтобы металл не терял свои основные эксплуатационные качества, обеспечивается быстрый отвод тепловой энергии.
  3. При создании изоляционных прослоек. В некоторых случаях материал не должен проводить передачу тепловой энергии. Для подобных условий эксплуатации выбирается металл, который обладает низким коэффициентом проводимости тепла.

Определяется рассматриваемый показатель при проведении испытаний в различных условиях. Как ранее было отмечено, коэффициент проводимости тепла может зависеть от температуры эксплуатации. Поэтому в таблицах указывается несколько его значений.

Перенос тепла на молекулярном уровне

Когда материя нагревается, увеличивается средняя кинетическая энергия составляющих ее частиц, то есть увеличивается уровень беспорядка, атомы и молекулы начинают более интенсивно и с большей амплитудой колебаться около своих равновесных положений в материале. Перенос тепла, который на макроскопическом уровне можно описать законом Фурье, на молекулярном уровне представляет собой обмен кинетической энергией между частицами (атомами и молекулами) вещества, без переноса последнего.

Это объяснение механизма теплопроводности на молекулярном уровне отличает его от механизма термической конвекции, при котором имеет место перенос тепла за счет переноса вещества. Все твердые тела обладают способностью к теплопроводности, в то время как тепловая конвекция возможна только в жидкостях и газах. Действительно, твердые вещества переносят тепло в основном за счет теплопроводности, а жидкости и газы, если есть температурные градиенты в них, переносят тепло в основном за счет процессов конвекции.

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями: