Контроллер уровня жидкости ЕвроАвтоматика ФиФ PZ-818


Внешнее расположение устройств чаще всего применяют, если система контроля протечки монтируется уже после завершения отделки и установки сантехники. В результате ток течет через зонд и этот ток преобразуется в пропорциональное ему напряжение. Реле USR- 05 на схеме помечены места подключения реле. Производители гарантируют работу системы даже в том случае, если датчик удален от блока управления на м. Напряжение быстро возрастает до порога срабатывания, при этом открывается транзистор который выполняет роль ключа. Електропідключення датчика протоку Grundfos Выключатели рознятся своей расцветкой. В одном положении электрическая цепь управления насосом соединяется одним проводом, а в другом — вторым.


Питание контроллера нужно отключить и включить заново.


Обязательно нужно выяснить характеристику материала, из которого планируется изготовить ёмкость.


При достижении жидкостью верхнего уровня магнит с поплавком включает верхний геркон SV1 и на катушку реле P1 подается напряжение.


В подобном устройстве в вертикальном штоке расположены герконовые элементы, а сам поплавок с кольцевым магнитом перемещается вдоль трубки и включает или отключает герконы. Но ток на фазах замерил клещами 59А.


Собираем сигнализатор затопления на основе датчика воды

Автомат контроля уровня жидкости PZ-818. Внешний вид

Чтобы читатель сразу понял, о чем идет речь, предлагаю обратиться к фото в начале статьи. Вот ещё фото, которые я сделал при распаковке данного девайса.

Упаковка:

Автомат контроля уровня F&F PZ-818

Комплектность – сам автомат контроля, три датчика (электрода) и руководство по эксплуатации:

Комплект автомата контроля уровня ФиФ

Датчики конструктивно исполнены таким образом, чтобы успокаивать возможные колебания уровня жидкости:

Устройство датчиков уровня

Фактически, это не датчики (датчик имеет на выходе какую-то информацию), это электроды или щупы.

Датчик уровня воды

В этом случае будет удобнее вариант схемы, показанный на рис. 2. Она является классическим генератором, который начинает работать только в случае, когда нет воды между электродами (вода закорачивает цепь конденсатора и срывает генерацию). В показанной на рисунке схеме нагрузка (электронасос, нагреватель или др.) будет включена при отсутствии воды в зоне контроля.

Рис. 2. Датчик воды на основе автогенератора.

Иногда бывает необходимо обеспечить гистерезис не только по срабатыванию исполнительного устройства, но и по уровню воды, например, при автоматическом управлении включением погружного насоса, применяемого для полива растений.

Зачем нужен контроль уровня?

Никакая теория не обходится без терминологии, поэтому начнем с названий и определений.

Названия у нашего прибора могут такие:

  • Автомат контроля уровня,
  • Реле контроля уровня,
  • Реле уровня жидкости,
  • Контроллер уровня воды
  • Регулятор уровня жидкости

Даже производитель путается (видимо, недоработка маркетологов) – на сайте написано одно название, в инструкции – другое, на упаковке – третье.

Но главное – не название, а те функции, которое наше устройство выполняет. Если коротко, у него две основные функции – контроль наполнения и контроль опорожнения емкости с жидкостью. Всё остальное – лишь варианты. Иначе говоря, реле уровня срабатывает либо при пересечении некоего верхнего уровня, либо нижнего.

Эти два режима могут называться по разному. Контроль наполнения могут называть контролем верхнего уровня, а контроль опорожнения – режимом откачивания или дренажа.

Имитация работы насоса

Подготовьте другую пару проводов той же длины, что и те, которые уже подключены к плате контроллера, зачистите их и подключите первый провод к клемме «низкий уровень», а второй провод к клемме «высокий уровень». Когда концы защитного кабеля насоса и «Земля» погружены в емкость с водой, должен гореть зеленый светодиод. Теперь погрузите в тот же контейнер с водой, что и предыдущие кабели с кабелем «низкого уровня». Зеленый светодиод должен гореть, а затем погрузив провод «высокого уровня» в тот же контейнер с водой, зеленый светодиод должен погаснуть. Это испытание имитировало заполнение резервуара водой через насос. Чтобы смоделировать сбор воды из контейнера, можете удалить провод «высокого уровня» из контейнера для воды, схема должна вести себя одинаково все время. Теперь удалите кабель низкого уровня из воды. Зеленый светодиод должен гореть, а реле должно включать насос.

Если схема успешно прошла все тесты, то контроллер уровня воды готов к использованию — можете испытывать его на практике. Электроды которые действуют как датчики, должны располагаться вертикально сверху вниз в резервуаре для воды. Чтобы предотвратить коррозию электродов стоит сделать их из нержавеющего материала (для увеличения срока службы). Если электроды будут проходить через стенку резервуара, обязательно загерметизируйте отверстия, чтобы предотвратить утечку.

Как работает контроль уровня?

Как я уже говорил, при пересечении установленного уровня (верхнего либо нижнего, зависит от режима работы) включается реле внутри устройства. То есть, фактически устройство контроля уровня является дискретным датчиком, сигнализирующем о том, что жидкостью был пересечён определенный уровень.

Определение реального уровня жидкости основано на кондуктометрическом принципе работы (на измерении проводимости). То есть, фактически используются операционные усилители, на один вход который подается опорное напряжение, на второй – напряжение, зависящее от сопротивления датчиков. Эти напряжения непрерывно сравниваются, и операционный усилитель, включенный по схеме компаратора, формирует на своем выходе дискретный сигнал (включено / выключено). Это очень упрощенно, в реле уровня ФиФ PZ-818 используется микроконтроллер, поэтому там не всё так просто.

Реле включает, как правило, насос, который работает на подачу воды (заполнение) либо на откачку (дренаж). Обычно для включения насоса применяется контактор, устройство плавного пуска или более сложная схема на основе преобразователя частоты.

Само собой, имеются множество тонкостей работы и настроек, о которых я буду говорить по ходу повествования.

Модернизация схемы измерителя уровня

На этот раз всё основано на популярном шестнадцатеричном инвертирующем буфере и преобразователе CD4049UB (IC1). Микросхема имеет стандартизованные симметричные выходные характеристики, широкий диапазон рабочего напряжения от 3 В до 18 В и рекомендуется для устройств, не требующих высокого тока или преобразования напряжения.

Оптический датчик уровня жидкости: подключение схемы и тесты

Здесь схема на основе CD4049UB обеспечивает одноточечное определение уровня жидкости через TTL-совместимый двухтактный выход, но можно добавить больше оптических датчиков уровня, чтобы реализовать свой собственный расширяемый, многоканальный, совместимый с микроконтроллером модуль определения уровня жидкости.

Оптический датчик уровня жидкости: подключение схемы и тесты

Параметры автомата контроля уровня Евроавтоматика F&F PZ-818

Рассмотрим технические характеристики реле уровня, приведенные в инструкции по эксплуатации.

Инструкция будет приведена в конце статьи.

Технические характеристики

  • Напряжение питания, В – 50 – 264 АС/DС. Довольно широкий диапазон напряжения, это может быть полезным при питании в промышленных цепях управления напряжением 110 В.
  • Макс. коммутируемый ток, А – 8 АС1. Это ток для идеальной (активной) нагрузки, типа ТЭНа. Если подключать контактор или более мощное реле, выходной ток должен быть в 3-5 раз меньше, для сохранения коммутационной износостойкости (иначе – для сохранения ресурса работы).
  • Контакт: Тип – 1Р (1 переключающий). Выходное реле, используемое внутри нашего прибора, имеет один переключающий контакт, выводы которого подключены на три выходные клеммы.
  • Количество контролируемых уровней – 2. Это означает, что переключение (смена состояния внутреннего реле) может происходить на двух уровнях, в зависимости от положения двух соответствующих датчиков.
  • Напряжение питания датчика, не более, В – 6. Это говорит о безопасности. Важно, что датчики гальванически полностью развязаны от питающей сети. И можно спокойно их касаться и настраивать, когда устройство подключено к сети.
  • Ток потребления датчика, не более, мА – 2. Понятно, что ток датчика маленький. Не понятно, зачем этот параметр здесь? Ведь не для выбора сечения провода?
  • Регулировка времени задержки вкл/откл, с – 0,5 -10. Это важный параметр, который влияет на время реакции автомата уровня, а значит на частоту запуска насоса. От него зависит такой важный параметр, как гистерезис. Например, при почти нулевом гистерезисе, высокой производительности насоса и скорости подачи воды насос может включаться/выключаться по нескольку раз в минуту. Это нехорошо и вредно и для гидравлической системы, и для насоса, и для питающей сети. Если же увеличить параметр времени задержки, гистерезис по уровню может достигать нескольких десятков сантиметров, что может быть вполне приемлемым для некоторых применений.
  • Чувствительность по нижнему и верхнему уровням, регулируемая, кОм – 5-150. А этот параметр влияет на широту спектра применений данного автомата контроля уровня. Недаром в инструкции сказано – «Автоматы не используются для контроля дистиллированной воды, бензина, масла, керосина, этиленгликоля, сжиженного газа». Дело в том, что сопротивление этих жидкостей очень высоко (некоторые с натяжкой можно назвать изоляторами). И чувствительности нашего PZ-818 не хватит, чтобы применить, например, на котельной, где используется химически очищенная вода. Её сопротивление может достигать 500 кОм. Практически сопротивление очень зависит от того, какая часть электрода (датчика) погружена в жидкость. Бесспорно, что датчики, опущенные в воду на 1 мм и на 10 см, будут давать значительно различающиеся показания сопротивления.
  • Диапазон рабочих температур, °С – – 25 – +50. При отрицательной температуре я бы не рекомендовал использовать никакое оборудование.
  • Степень защиты IР20. Открыто устанавливать наш регулятор уровня нельзя, нужна установка только в электрощит.
  • Коммутационная износостойкость – >105 циклов. Как я писал выше, этот параметр сильно зависит от тока через контакты реле. Однако, даже если ток будет в 10 раз меньше максимального, при неправильной настройке задержки данный ресурс может закончиться через год!
  • Потребляемая мощность, Вт – 1. Пренебрежимо мало, по сравнению с потреблением всей системы контроля уровня. Подключение – винтовые зажимы 2,5 мм2. Больше и не надо. Оптимально – от 0,75 до 1,5 мм2
  • Габариты (ШхВхГ), мм – 18 х 90 х 65. Тип корпуса – 1S. Реле контроля уровня PZ-818 занимает место одного однополюсного автомата, что очень удобно при монтаже.

Принцип работы оптического датчика уровня

Датчик содержит инфракрасный светодиод и фототранзистор. Поскольку свет от LED передается на оптическую головку, фототранзистор получает нулевой свет (или меньше света), когда датчик погружен в жидкость — проходящий световой луч будет преломляться. Если жидкости нет, проходящий свет будет возвращаться на фототранзистор непосредственно через оптическую головку. Поэтому если датчик определяет уровень жидкости, он выдает сигнал низкого уровня.

Оптический датчик уровня жидкости: подключение схемы и тесты

На рисунке ниже несколько вариантов по установке датчика в различные ёмкости.

Оптический датчик уровня жидкости: подключение схемы и тесты

Посмотрев на выходной сигнал с помощью мультиметра, можно увидеть сигнал с высоким логическим уровнем в «сухом состоянии» и низкий логический уровень во «влажном состоянии». Следующая схема позволяет использовать выход датчика для непосредственного управления индикатором или даже стандартным электромагнитным реле.

Оптический датчик уровня жидкости: подключение схемы и тесты

Тут может потребоваться изменить значение R1 (минимум 390 Ом) и R2 (максимум 10 кОм), чтобы получить приемлемые результаты. Элемент BS170 (T1) представляет собой малосигнальный МОП-транзистор с N-каналом, 500 мА, 60 В, доступный в корпусе TO-92, но не с логическим уровнем.

Автомат контроля уровня – органы управления

Рассмотрим переднюю панель прибора.

Панель управления реле контроля уровня

Мы видим два индикатора и три регулятора:

  • Индикатор L (Level – Уровень) зеленого цвета включается тогда, когда уровень жидкости в норме. Для режима наполнения нормальный уровень – выше уровня датчика максимума, для режима дренажа – когда уровень ниже уровня датчика минимума.
  • Индикатор R (Нагрузка) красного цвета говорит о том, что реле находится в активной фазе, и насос в данный момент включен. Когда идет время задержки, индикатор мигает.
  • Регулятор времени задержки. Чем больше выставить задержку, тем реже будет включаться насос, и изменения уровня могут быть значительными. Чем меньше установить задержку – тем точнее будет поддерживаться уровень, но тогда и насосу придётся потрудиться.
  • Регуляторы чувствительности верхнего и нижнего уровня. Служат для подстройки чувствительности в зависимости от проводимости жидкости. Также иногда этими регуляторами можно в небольших пределах (не более длины датчика) изменить уровни срабатывания.

При большом расстоянии между датчиками (большая по диаметру ёмкость) и малой электропроводности жидкости раздельная регулировка чувствительности позволяет оптимально настроить работу реле PZ-818. В реле уровня с одним регулятором чувствительности при работе в таких условиях трудно добиться стабильной работы.

Передняя панель регулятора и органы управления

Зеленый и красный индикаторы горят во время работы поочередно (а иногда и одновременно), поэтому в индикаторе питания необходимости нет.

Обзор датчика уровня воды

Подобный принцип только механический применяется в бачке унитаза.


Информация: Разумеется, можно своими руками изготовить и запорный клапан. А1 фаза с контактов реле Р.


Внутри вертикального штока расположены герконы.


После главной задвижки, которая подает воду от стояка в квартиру не важно, до или после прибора учета , установлен электромагнитный клапан. Нижняя схема. Эти устройства в широком ассортименте предлагаются сантехническими магазинами.


Подготовка к монтажу системы защиты от протечек Установка шаровых кранов с электроприводом Место расположения контроллера системы защиты Крепление держателей для установки датчиков протечки Установка датчиков системы защиты от протечек Крепление герметичной крышики датчика Подключение к контроллеру составляющих системы Контрольная проверка выполнения монтажных работ Врезка шарового крана Перед проведением работ нужно перекрыть краны, расположенные на входах стояков холодной и горячей воды. Не потребляет ток в режиме ожидания! Питание цепей управления осуществляется напряжением вольт.

Справочная информация Вне зависимости от того, приобретается система защиты от протечек в магазине, или изготавливается своими руками, надо знать единые стандарты ее работы. Хорошо, если в этот момент вы дома, и не спите. Точнее сказать, пока только об обнаружении протечек. Металлический шарик, который находится внутри корпуса, перекатываясь, коммутирует электрическую цепь реле насоса.

При попадание воды на датчик выводим пообщение о протекании. Однако это сложное устройство лучше приобрести в готовом виде. В зависимости от содержания в воде посторонних примесей может меняться плотность и электропроводность раствора, что с большой вероятностью отразится на показаниях. Они бывают синего, коричневого или черного цвета. На контроллере и в инструкции четко указано, куда и какой провод должен быть подсоединен.

Обычно они задействованы в низковольтной схеме коммутации работы мощного реле насоса, помещенной в шкаф управления. Есть варианты под 3 или 12 вольтовые батарейки. На самом деле, это само собой разумеющийся факт, ведь чем по сути отличается схема откачивания от схемы накачивания, разве что тем, что герконы расположены один снизу второй внизу. Подключение реле давления

Временные диаграммы работы в режимах наполнения и откачивания

В зависимости от выбранного режима работы, возможны две диаграммы.

Диаграмма при работе на наполнение емкости:

Диаграмма работы реле уровня в режиме наполнения

Кривая на диаграмме – уровень жидкости, Мах и Min – уровни, на которых установлены датчики. На графике К показана работа выходного реле (фактически, работа насоса). Графики R и К почти совпадают, за исключением индикации времени задержки. График L показывает достижение и потеря нужного уровня, и если не учитывать индикацию задержки, является инверсией графика R.

В режиме откачивания график будет таким:

Диаграмма работы в режиме дренажа (откачки)

Присмотревшись к обоим графикам, можно заметить, что они во многом схожи. И если бы не времена задержки (а без них никак!), можно было бы использовать один режим для всех применений, просто перекидывая клемму реле с нормально открытой на нормально закрытую. В автомате контроля уровня переход с режима на режим реализован по другому, об этом чуть ниже.

По времени задержки Тз у меня сомнение – во всех случаях оно должно быть одинаковым, хотя на графиках это не так. Что ж, при установке и исследовании на практике данного регулятора уровня уточним этот момент.

Схемы подключения реле контроля уровня PZ-818

Подбираемся к практической стороне вопроса.

Вот схема, приведенная на боковой стенке реле:

Схема реле на корпусе устройства

Как обычно, у меня несколько каверзных вопросов к тому, кто её рисовал:

  1. Почему все клеммы хаотично разбросаны по схеме? Неужели нельзя было схематично изобразить корпус прибора и немного приблизиться к реальности?
  2. Кто-нибудь объяснит мне, почему мощность резистора между клеммами 1 и 2 обозначена как 0,25 Вт, хотя в характеристиках указана потребляемая мощность прибора 1 Вт? Хотя, возможно, это не мощность – так схематично обозначена катушка условного реле. И куда дальше вниз уходят питающие провода?

Хватит придираться, рассмотрим объемную схему подключения:

Схема подключения реле уровня

Из этой схемы всё ясно-понятно. Были бы ещё номера клемм! Но они указаны на обычных принципиальных схемах. Вот схема для контроля наполнения:

Схема включения контроллера уровня для контроля процесса наполнения емкости

Распишу работу схемы.

Питание подается на клеммы 1 и 3. Причем, фазировка и полярность (если это будет постоянное напряжение) особой роли не играют. Но соблюдать их для порядка надо!

Клемма 7 – общая (входная) для внутреннего переключающего реле. Когда реле срабатывает (в данном случае – когда пришло время «наполнить бокалы»)), замыкается его нормально открытый контакт, и через клемму 9 фаза подается на катушку контактора. Контактор включается, и подает питание на насос.

К клеммам 10, 11, 12 подключены датчики соответственно минимального, максимального уровня, и датчик опорного уровня (общий). Их подключение хорошо показано на предыдущей схеме.

А вот схема для откачки (или дренажа, или опорожнения емкости):

Схема включения контроллера уровня для контроля процесса опустошения емкости

Найдите отличия! Оно всего одно – установлена перемычка между клеммами 4 и 6. Именно таким образом переключаются режимы заполнения / откачки. Необязательно для этого использовать перемычку – для оперативного переключения режимов может использоваться переключатель, контакт реле или даже выход контроллера.

Клеммы 2 и 5 не используются (их нет физически – зачем они тогда приведены на схеме?), а клемму 8 можно использовать для внешнего индикатора «Насос выключен».

Второй вариант схемы датчика уровня

Это полностью функциональный контроллер уровня воды, управляемый МК Arduino. Схема отображает уровень воды в баке и переключает двигатель, когда уровень воды опускается ниже заданного уровня. Она автоматически отключает мотор, когда бак полный. Уровень воды и другие важные данные отображаются на ЖК-дисплее 16х2 точек. В авторском варианте схема контролирует уровень воды в дренажном баке (резервуаре). Если уровень бака низкий, электродвигатель насоса не включится, что обеспечивает защиту двигателя от холостого хода. Дополнительно звуковой сигнал генерируется, когда уровень в дренажном баке слишком низкий.

контроллер уровня воды, управляемый МК Arduino

Схема уровня воды с помощью контроллера Arduino показано выше. Датчик в сборе состоит из четырех алюминиевых проволок длинной в 1/4, 1/2, 3/4 и полный уровень в баке. Сухие концы этих проводов подключены к аналоговым входам A1, A2, A3 и A4 Arduino соответственно. Пятый провод размещен в нижней части бака. Резисторы R6 — R9 уменьшают потенциал входов. Сухой конец провода подключен к +5V DC. Когда вода касается конкретного зонда, происходит электрическое соединение между зондом и +5V, потому что вода обладает некоторой электропроводностью. В результате ток течет через зонд и этот ток преобразуется в пропорциональное ему напряжение. Arduino читает падении напряжения по каждому из входных резистор для зондирования уровня воды в баке. Транзистор Q1 включает зуммер, резистор R5 ограничивает ток базы Q1. Транзистор Q2 управляет реле. Резистор R3 ограничивает ток базы Q2. Переменник R2 используется для регулировки контрастности ЖК-дисплея. резистор R1 ограничивает ток через его LED подсветку. Резистор R4 ограничивает ток через светодиодный индикатор питания. Полную программу для контроллера на Arduino можно загрузить тут.

Схемы с работой по одному уровню

В инструкции также приведены схемы наполнения и откачивания с работой по одному уровню. Там замкнуты входы датчиков Min и Max, а вместо трех датчиков используются два.

«Одноуровневая» схема наполнения работает «топорно» – чуть только датчик оголился – через время задержки включается насос, пока вода опять не коснется обоих датчиков.

Схема при работе на откачку та же, с установкой перемычки. Только датчики установлены около дна резервуара.

И напоследок –

Как правильно подключить датчик уровня автомобильного топлива при наличии выключателя массы

Если на автомобиле установлен выключатель массы, могут использоваться два варианта схемы подключения датчика уровня топлива:

  • подключение за выключателем массы. Следует учесть, что в данном случае при выключении массы будет происходить обесточивание датчика. Указатель будет отображать последние данные уровня горючего, которые были зафиксированы во время эксплуатации транспортного средства. После включения датчика эти данные могут измениться. Причины — суточные температурные колебания, деформация топливного бака или слив топлива во время стоянки авто. При этом установить время слива (а соответственно, прямо доказать его факт) невозможно. Если используется недорогой датчик уровня топлива, схема подключения данного типа вполне подходит. В данном случае нет необходимости использования гальванической развязки. Она же рекомендована, если аккумулятор автомобиля часто снимается или отсутствует;
  • подключение непосредственно к аккумулятору. Рекомендуется использовать современные электронные датчики с интегрированной гальванической развязкой. Она обеспечивает защиту оборудования от воздействия электротока в аварийной ситуации. Если нет встроенной гальванической развязки, нужно установить ее дополнительно. Подключение по такой схеме датчика уровня топлива считается оптимальным в функциональном и практическом аспекте. Кроме того, оно признано безопасным, так как устройство потребляет ток в диапазоне 10–48 милиампер. Корпус датчика выполнен из неэлектропроводного материала, что обеспечивает защиту электросхем от пробоя тока.

Конструкция и внутреннее устройство контроллера уровня F&F PZ-818

Вид лицевой панели управления я уже приводил, а вот вид сзади, со стороны крепления на ДИН-рейку:

Крепление корпуса на ДИН-рейку

Верхние клеммы:

Контакты реле контроля уровня сверху

1, 3 – питание, 4, 6 – входы управления режимом работы. Видно, что клемм 2 и 5 нет, но номера приведены…

Нижние клеммы:

Контакты реле контроля уровня снизу

7, 8, 9 – выводы внутреннего реле, 10, 11, 12 – клеммы для подключения датчиков.

Чтобы посмотреть устройство, вскрываем корпус прибора.

Внутреннее устройство реле контроля уровня

Он на защелках, поэтому разбирается с помощью маленькой шлицевой отвертки.

Вот как выглядит передняя панель в разобранном виде:

Реле уровня, вскрытая передняя панель

Видим три потенциометра по 100 кОм, и два прямоугольных светодиода (кстати, их тяжело засунуть обратно при сборке). Выходное реле имеет катушку на 12 В. Ток – до 8 А, как и было указано в характеристиках на PZ-818.

Эта же плата – со стороны пайки:

Внутренности автомата уровня – вид на силовые клеммы и пайку реле

Видны усиленные дорожки от реле к клеммам.

Смотрим на нижнюю плату. Клеммы датчиков (слева):

Клеммы для подключения датчиков уровня (щупов)

Сигнал, проходя входные делители, уходит на операционный усилитель, расположенный на главной плате. Кстати, изменив сопротивление этих резисторов, можно увеличить чувствительность устройства. Только неизвестно, что будет со стабильностью работы.

Теперь – цепи питания:

Схема питания, вид со стороны пайки

Справа – клеммы 1 и 3, далее гасящие цепи на RC-цепи, диодный мостик, и микросхема-преобразователь питания (конвертер с широким диапазоном входного напряжения) LNK306GN.

Далее – фототранзистор Cosmo KPC357NT, необходимый для гальванической развязки первичной и вторичной цепей питания.

Центральная плата:

Центральная плата, с двумя основными микросхемами

Вверху – операционный усилитель LM2902, на котором собран компаратор, работающий от датчиков. Внизу – контроллер PIC16F684, на котором работает программа автомата контроля уровня.

Вид с другой точки:

Вид на центральную плату и на клеммы

А теперь – обещанная

Датчик уровня топлива — общая схема подключения


После установки прибора в топливном баке необходимо подключить его к бортовой сети автомобиля. К датчику подсоединяется кабель, который подключается к указателю на приборной панели. Для качественного соединения рекомендуется использовать специальные коннекторы, а места соединения изолировать с помощью гофры или изоленты. После подключения по схеме датчика уровня топлива необходимо залить горючее в бак и проверить корректность работы устройства. Значение на указателе должно соответствовать реальному объему залитого бензина.

Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями: