Как называется сплав олова и меди?


Медь относится к группе цветных металлов, наиболее широко применяемых в промышленности. Порядковый номер меди в периодической системе Д. И. Менделеева — 29, атомный вес А = 63,57. Медь имеет гранецентрированную кубическую решетку (ГЦК) с периодом а = 3,607 Å.

Удельный вес меди g = 8,94 г/см3, температура плавления — 1083 0С. Чистая медь обладает высокой тепло — и электропроводностью. Удельное электрическое сопротивление меди 0,0175 мкОм×м, теплопроводность l = 395 Вт/(м×град). Предел прочности sв = 200…250 МПа, твердость 85…115 НВ, относительное удлинение d = 50 %, относительное сужение y = 75 %.

Медь — немагнитный металл. Она обладает хорошей технологичностью: обрабатывается давлением, резанием, легко полируется, хорошо паяется и сваривается, имеет высокую коррозионную стойкость. Основная область применения — электротехническая промышленность.

Электропроводность меди существенно понижается при наличии даже очень небольшого количества примесей. Поэтому в качестве проводникового материала применяют в основном особо чистую медь М00 (99,99 %), электролитическую медь М0 (99,95 %), М1 (99,9 %). Марки технической меди М2 (99,7 %), М3 (99,5 %), М4 (99,0 %).

В зависимости от механических свойств различают медь твердую, нагартованную (МТ) и медь мягкую, отожженную (ММ).

Вредными примесями в меди являются висмут, свинец, сера и кислород. Действие висмута и свинца аналогично действию серы в стали; они образуют с медью легкоплавкие эвтектики, располагающиеся по границам зерен, что приводит к разрушению меди при ее обработке давлением в горячем состоянии (температура плавления эвтектики соответственно 270 0С и 326 0С).

Сера и кислород снижают пластичность меди за счет образования хрупких химических соединений Сu2O и Сu2S.

В качестве конструкционного материала технически чистую медь применяют редко, так как она имеет низкие прочностные свойства, твердость. Основными конструкционными материалами на основе меди являются сплавы латуни и бронзы. Для маркировки медных сплавов используют следующее буквенное обозначение легирующих элементов:

  • О — олово; Ц — цинк; Х — хром;
  • Ж — железо; Н — никель; С — свинец;
  • К — кремний; А — алюминий; Ф — фосфор;
  • Мц — марганец; Мг – магний; Б – бериллий.

История возникновения бронзы

Благодаря улучшению качества обработки таких металлов, как медь и олово, в 3000 году до н.э. начался Бронзовый век. Он характеризуется активной выработкой такого сплава, как бронза, которая использовалась для изготовления орудий труда и украшений.

В современной металлургической промышленности, кроме меди и олова, используют также такие материалы, как алюминий, фосфор, свинец, цинк. Само название происходит от персидского слова «berenj», которое переводится «медь».

Известно, что первая бронза была изготовлена из Cu и мышьяка и называлась мышьяковистой. Однако из-за своей токсичности она очень быстро сменилась оловянной. Не удивительно, что кузнецов очень часто рисовали некрасивыми и изуродованными. На самом деле так и было. Длительный контакт с мышьяком очень плохо влиял на их организм. По этой причине сплав меди с оловом называется бронзой, так как именно эти компоненты присутствуют в ней чаще всего.

сплав содержащий медь и олово

Плавление меди в домашних условиях

Чтобы получить сплав меди в домашних условиях, нужно изготовить самодельное оборудование для плавления. Процесс проводится следующим образом:

  1. Изготавливается из силикатного кирпича опора.
  2. Сверху укладывается сетка из металла с мелкими ячейками.
  3. Насыпается уголь и разогревается газовой горелкой. Чтобы огонь разгорелся лучше, направляется струя воздуха из пылесоса.
  4. На огонь ставится тигель с мелкими кусочками металла.
  5. По окончании процесса жидкий металл сливается в форму.

Физические свойства медных сплавов сделали их незаменимыми во многих сферах хозяйственной деятельности. Без них не обойдется самолетостроение и судостроение. Нельзя представить без такого металла и часовые механизмы. Любая конструкция, в которой имеются работающие в паре детали, нуждается в антифрикционном материале.

Характеристика бронзы

Все мы знаем, что такой металл, как медь, очень мягкий, пластичный и абсолютно непрочный. В то же время он обладает очень высокой электро- и теплопроводностью. Сплав олова и меди – материал, который значительно превосходит характеристики этих химический элементов по отдельности. Другими словами, бронза обладает высокой твердостью, прочностью, но в то же время она довольно легкоплавка.

Открытие этого сплава сыграло большую роль в металлургической промышленности. Несмотря на то что позже было изобретено множество других материалов, даже сегодня он пользуется большой популярностью за счет своих хороших механических свойств.

Форма нахождения в природе

Облик кристаллов. Облик кристаллов кубический, тетрагексаэдрический, додекаэдрический, реже — октаэдрический (возможно, псевдоморфозы по куприту). Грани часто шероховатые, с углублениями или возвышениями. Простые кристаллы редки.

Двойники.

Двойники срастания по (111) обычны, иногда полисинтетические, часто пластинчатые в направлении двойники оси или удлиненные паралелльны диагонали двойники плоскости. Обычно кристаллы (простые и двойники) неравномерно развиты: вытянуты, укорочены или деформированы. Характерны дендритовидные формы, представляющие собой однообразные срастания множества кристаллов (единообразно деформированных или правильных) по какому-либо одному направлению. Таковы, например, двойниковые по (111) кристаллы, вытянутые по оси симметрии 2-го порядка и сросшиеся параллельно граням ромбического додекаэдра) или срастания правильных двойниковых кристаллов, разветвляющиеся по направлению ребер и диагоналей октаэдрических граней, а также параллельные срастания кристаллов, вытянутых в направлении осей 4-го порядка. В сплошных выделениях самородной меди при травлении обнаруживаются признаки собирательной кристаллизации с развитием крупных зерен за счет более мелких зональных зерен неправильной формы.

Читать также: Датчик день ночь для включения света

Агрегаты. Искаженные кристаллы, в одиночных неправильных зернах, дендритовидные сростки, нитевидные, проволочные, моховидные образования, тонкие пластинки, конкреции, порошковатые скопления и сплошные массы весом до нескольких сотен тонн.

Из чего состоит медь состав
Дендриты

Способность бронзы сопротивляться коррозии

Одним из самых важных свойств сплава является его коррозионная устойчивость. Особенно это касается тех составов, в которых присутствует значительное содержание марганца и кремния (более 2%).

Было установлено, что высокая коррозионная устойчивость проявляется при контакте бронзы с водой (морской и пресной), концентрированными щелочами и кислотами, сульфатами и хлоридами легких металлов, а также при контакте с сухими газами (безоловянные бронзы).

Конечно же, в целом коррозионные свойства сплава зависят от легирующих элементов. Так, высокое содержание свинца уменьшает способность сопротивляться коррозии, а никель повышает это свойство.

Химический состав

Содержит иногда примеси Fe, Ag, Pb, Au, Hg, Bi, Sb, V, Ge 3 (серебристая медь с 3—4% Ag, железистая—2,5% Fe и золотистая—2—3% Au). Примеси наблюдаются чаще в первичной самородной меди; вторичная медь обычно более чистая. Состав самородной меди из Шамлугского месторождения (Армения): Cu — 97,20 —97,46%, Fe — 0,25%; в меди из месторождений Алтая определено 98,3% Cu и более.

Кристаллографическая характеристика

Сингония. Кубическая.

Класс. Гексоктаэдрический.

Кристаллическая структура

Для кристаллической структуры характерна гранецентрированная решетка; по углам и в центрах граней элементарного куба расположены атомы меди. Это формальное выражение того, что в структуре меди имеется плотнейшая упаковка (так называемая кубическая плотнейшая упаковка) из атомов металла с радиусом 1,27 А и расстоянием между ближайшими атомами 2,54 А при выполнении пространства в 74,05%. Каждый атом Cu окружен 12 ему подобными (координационное число 12), располагающимися вокруг него по вершинам так называемого Архимедова кубооктаэдра.

Главные формы:а (100), d (110), о (111), l (530), е (210), h (410).

Виды бронзы

Легирующие элементы, которые могут быть в составе этого сплава, способны значительно менять его свойства, от них зависит и вид бронзы. К тому же и олово может быть заменено другими элементами. Например, БрАМЦ-7-1 можно расшифровать так: 92% меди, 7% алюминия, 1% марганца. Данная марка бронзы не содержит в себе олова и благодаря этому обладает высоким сопротивлением к знакопеременной нагрузке. Её используют для изготовления болтов, винтов, гаек и деталей для гидравлических установок.

Другой пример – оловянная литейная бронза марки БрО10С10. В ней содержится до 83% меди, 9% олова, 8% свинца и до 0,1% железа, кремния, фосфора и алюминия. Она предназначена для деталей, которые работают в условиях высоких удельных давлений, например, для подшипников скольжения.

бронза сплав меди и олова

Несмотря на то что бронза является сплавом олова и меди, в некоторых случаях такой химический элемент, как Sn, не используется. Еще один пример безоловянной бронзы – жаропрочная. Для её изготовления применяют только медь 98-99% и кадмий 1-2%. Примером может послужить марка БрКд1. Это жаропрочная кадмиевая бронза, обладающая высокой жаропрочностью и электропроводностью. Она может быть применена для изготовления деталей машин контактной сварки, коллекторов электродвигателей и других деталей, работающих в условиях высоких температур и требующих хорошей электропроводности.

Еще один вид сплава, используемый для изготовления прокладок в подшипниках и втулках автомобилей – обрабатываемая давлением оловянная бронза. Сплав меди и олова содержит такие легирующие элементы как свинец (4%), цинк (4%), алюминий (0,002%), железо (0,005%). Марка стали называется БрОЦС4-4-4. Именно благодаря процентному соотношению данных химических элементов этот сплав можно обрабатывать давлением и резанием. Цвет бронзы также зависит от примесей. Так, чем меньше меди содержит сплав, тем менее выраженный цвет: более 90% — красный, до 80% – желтый, менее 35% — серо-стальной.

сплав состоит из меди и олова

Классификация медных сплавов

По характеру взаимодействия с медью легирующие элементы и примеси разделяют на три группы:

a) Элементы, взаимодействующие с медью с образованием твердых растворов (Ag, Al, As, Au, Cd, Fe, Ni, Pt, P, Sb, Sn, Zn). Они повышают ее прочность, но при этом существенно уменьшается значение тепло- и электропроводности (в первую очередь, из-за присутствия сурьмы и мышьяка).

b) Элементы, практически нерастворимые в меди в твердом состоянии и образующие с ней легкоплавкие эвтектики (Bi, Pb). Возникновение эвтектик по границам зерен приводит к разрушению слитков меди в процессе их горячей прокатки (явление красноломкости). Повышенное содержание висмута (более 0,005 %) вызывает хладноломкость меди.

c) Элементы (Se, S, O, Te), образующие с медью хрупкие химические соединения (например, Cu2O, Cu2S). Увеличение содержания серы в меди, с одной стороны, обеспечивает повышение качества ее механической обработки (резанием), с другой, вызывает хладноломкость меди. Присутствие кислорода в меди является причиной ее «водородной болезни», проявляющейся в образовании микротрещин и разрушении при обжоге (t> 400`C) в водородсодержащей среде. В данном случае водород, активно диффундирующий в металл, отнимает кислород у закиси меди Cu2Oс образованием паров воды. В металле возникают области с высоким давлением, вызывающим разрушение материала.

Сплавы меди с цинком называют латунями, томпаками (до 10 % Zn) или полутомпаками (от 10 до 20 % Zn); за исключением сплавов с никелем, все другие ее сплавы называют бронзами.

а) Латунь

Латунь– это медный сплав с добавлением цинка. Цинк, содержание которого в составе может доходить до 40%, повышает прочность и пластичность сплава. Наиболее пластична латунь, с долей цинка около 30%. Она применяется для производства проволоки и тонких листов.

В состав также могут входить железо, олово, свинец, никель, марганец и другие компоненты. Они повышаю коррозийную устойчивость и механические свойства сплава.

Латунь хорошо подвергается обработке: сварке и прокатке, отлично полируется.

Широкий диапазон свойств, низкая себестоимость, легкость в обработке и красивый желтый цвет делают латунь наиболее распространенным медным сплавом с большой областью применения.

Все латуни делятся на деформируемые латуни, литейные латуни и ювелирные сплавы.

Деформируемые латуни

Деформируемые латуни бывают двойные и многокомпонентные.

Деформируемые латуни (другое название – томпак) имеют процентное содержание меди 90-97%. Они высоко пластичны, обладают высокой устойчивостью к коррозии, хорошими антифрикционными свойствами, легко свариваются со сталью. Томпак окрашен в приятный золотистый цвет, благодаря чему, сплав используется для изготовления фурнитуры, художественных изделий, знаков отличия.

Двойные деформируемые латуни используются в автомобилестроении, для изготовления различной аппаратуры, змеевиков, сильфонов, гаек, болтов, конденсаторных труб, толстостенных патрубков.

Многокомпонентные деформируемые латуни применяют для изготовления деталей часов, электромашин, морских судов, самолетов, химической аппаратуры. Из них производят вкладыши подшипников, арматуру, втулки, пружины и полиграфические матрицы.

Литейные латуни

Литейные латуни применяют для изготовления литых деталей арматуры, устойчивых к коррозии и высокой температуре деталей ответственного назначения.

Латуньмаркируется следующим образом: сначала идет буква Л, а за ней ставятся цифры, указывающие процентное содержание меди, а также других металлов в сплаве. Такая маркировка позволяет легко ориентироваться в свойствах и области применения. Так, например, латуни Л62 и Л68 используются вместо меди для изготовления деталей методом глубокой штамповки. Состав латуни должен соответствовать нормам ГОСТа.

б) Бронзы

БРО́НЗА (франц. bronze),сплавмеди с разными химическими элементами, главным образом металлами (олово,алюминий,бериллий,свинец,кадмий,хроми др.). Соответственно, бронза называется оловянной, алюминиевой, бериллиевой и т.п. Исключение составляют сплавы меди с цинком, которые называютсялатунь, и сплавы меди с никелем — медноникелевые сплавы.

При введении в медь различных элементов —легировании— атомы легирующей примеси увеличивают деформацию и концентрацию дефектов ее кристаллической решетки. Кроме этого, атомы примеси взаимодействуют сдислокациямии затрудняют их подвижность, упрочняя медь. Поэтому удельное сопротивление бронз выше, чем у чистой меди, выше также предел прочности на разрыв и твердость, меньше относительное удлинение перед разрывом. Бронзы лучше обрабатываются на металлорежущих станках и обладают более высокими литейными свойствами, чем медь.

Оловянные бронзы

Оловянная бронза — древнейший сплав, выплавленный человеком. Первые изделия из бронзы получены около 3 тыс. лет до н. э. восстановительной плавкой смеси медной и оловянной руд с древесным углем. Значительно позднее бронзы стали изготовлять добавкой в медь олова и других металлов. Бронза применялась в древности для производства оружия и орудий труда (наконечников стрел, кинжалов, топоров), украшений, монет и зеркал. В Средние века большое количество бронзы шло на отливку колоколов. Колокольная бронза обычно содержит 20% олова. До середины 19 в. для отливки орудийных стволов использовалась пушечная (орудийная) бронза — сплав меди с 10% олова.

В наши дни в практике нашли применение бронзы, содержащие до 14% олова. Оловянные бронзы обладают высокими антифрикционными свойствами, нечувствительны к перегреву, морозостойки, немагнитны. Главными недостатками оловянных бронз являются образование пор в отливках, что ведет к их невысокой герметичности. Оловянные бронзы легируют цинком, свинцом, никелем, фосфором. Фосфор образует соединение с медью, влияющее на характер кристаллизационных процессов в сплаве. Он водится в оловянную бронзу как раскислитель и устраняет хрупкие включения окиси олова. При содержания в бронзе около 1% фосфора, ее называют фосфористой. Легирование фосфором повышает механические, технологические, антифрикционные характеристики оловянных бронз. Введение никеля способствует повышению механических и противокоррозионных свойств. Легирование свинцом увеличивает плотность бронз, улучшает антифрикционные свойства и обрабатываемость резанием, однако при этом снижаются механические свойства. Введение железа способствует повышению механических свойств бронз, однако с увеличением концентрации железа резко снижаются коррозионная стойкость и технологические свойства.

Алюминиевые бронзы

Алюминиевые бронзы обладают высокими механическими, антифрикционными и противокоррозионными свойствами. Для снижения усадки, окисляемости и склонности к газонасыщению алюминиевые бронзы легируют железом, никелем, марганцем. Основное применение алюминиевых бронз — для изготовления ответственных деталей машин, работающих при интенсивном изнашивании и повышенных температурах.

Кремниевые бронзы

Кремнистые бронзы характеризуются высокими антифрикционными, упругими свойствами, коррозионной стойкостью. Кремнистые бронзы уступают оловянным по величине усадки, но превосходят по коррозионной стойкости, механическим свойствам и плотности отливки. При добавлении кремния образуется сплав на основе твердого раствора кремния в меди, такой сплав хорошо обрабатывается давлением, пластичен. Кремнистые бронзы применяю для изготовления антифрикционных деталей, пружин, мембран приборов и оборудования.

Бериллиевые бронзы

Высокой механической прочностью обладает бериллиевая бронза. Она отличается высокой твердостью и упругостью, износостойкостью и стойкостью к воздействию коррозионных сред, что обеспечивает работоспособность изделий при повышенных температурах. Бериллиевая бронза хорошо обрабатывается резанием и сваривается. Используется для изготовления деталей, эксплуатируемых при повышенных скоростях перемещения, нагрузках, температуре.

Хромовые бронзы

Хромовые бронзы отличаются высокими механическими свойствами, высокой электропроводностью и теплопроводностью и повышенной температурой рекристаллизации. Эти сплавы широко применяются для электродов электросварочных аппаратов и изготовления коллекторов электромоторов, как более качественные сплавы, чем кадмиевая бронза и коллекторная медь, применяемые для этих целей.

в) Медно-никелевые сплавы

Сплавы на основе меди, содержащие никель в качестве главного легирующего элемента. Никель образует с медью непрерывный ряд твёрдых растворов. При добавленииникеля к медивозрастают её прочность и электросопротивление, снижается температурный коэффициент электросопротивления, сильно повышается стойкость против коррозии. Медно-никелевые сплавы хорошо обрабатываются давлением в горячем и холодном состоянии.

Мельхиор

Мельхиор — однофазный сплав, представляющий собой твёрдый раствор; хорошо обрабатывается давлением в горячем и холодном состоянии, после отжига имеет предел прочности около 400 Мн/м2 (40 кгс/мм2). Наиболее ценное свойство Мельхиора — высокая стойкость против коррозии в воздушной атмосфере, пресной и морской воде. Увеличенное содержание никеля, а также добавки железа и марганца обеспечивают повышенную коррозионную и кавитационную стойкость, особенно в морской воде и в атмосфере водяного пара.

Нейзильбер

Нейзильбер — сплав меди с 5—35% Ni и 13—45% Zn. При повышенном содержании никеля имеет красивый белый цвет с зеленоватым или синеватым отливом и высокую стойкость против коррозии. Дорогие изделия из сплавов типа Нейзильбер под названием «пакфонг» завезены в Европу из Китая в 18 в. В 19 в. изделия из сплавов такого типа, обычно посеребрённые, производили под разными наименованиями: китайское серебро, мельхиор и др.

Обработка бронзы

Как уже было сказано ранее, сплав олова и меди – это достаточно прочный материал. Он плохо поддается заточке, резанию и обработке давлением. В целом это литейный материал, обладающий малой усадкой — около одного процента. И даже несмотря на невысокую текучесть и склонность к ликвации, бронзу применяют для изготовления сложных по конфигурации отливок. Не исключение и художественное литьё.

Легирующие элементы, которые добавляются в сплав олова и меди, улучшают его свойства и уменьшают цену. Так, например, легирование свинцом и фосфором позволяет улучшить обработку бронзы, а цинк увеличивает её коррозионную стойкость. Для определенных целей изготавливают деформированные сплавы. Они легко изменяют свой вид при использовании холодной ковки.

Происхождение и нахождение

Гидротермальное. Накапливается в россыпях. Как уникальные явления описаны самородки массой до 450 т.

Самородная медь образуется в восстановительных условиях при различных геологических процессах; значительная часть ее выделяется из гидротермальных растворов. В виде микроскопических выделений наблюдается во многих, преимущественно основных, изверженных породах, подвергшихся воздействию гидротермальных растворов, например, в серпентинизированных перидотитах, дунитах и серпентинитах. В этом случае возникновение самородной меди, возможно, связано с разложением ранее образовавшихся медных сульфидов, например, кубанита (Урал, Закавказье). Аналогичное происхождение можно приписать самородной меди в амфиболитизированных основных породах Серовского района Свердловской области. В Карабашском месторождении медистого золота Челябинской области самородная медь наблюдается в жилообразных телах диопсидо-гранатовых пород, залегающих среди серпентинитов; для самородной меди здесь характерна ассоциация с медистым золотом, халькозином, кальцитом, диопсидом, апатитом, сфеном, магнетитом и др. В некоторых древних вулканических породах (мелафирах, диабазах и др.), метаморфизованных под воздействием паров, газов и гидротермальных растворов, медь выполняет миндалины, образует цемент между минералами измененной лавы, заполняет пустоты и трещины; сопровождается гидротермальными минералами: анальцимом, ломонтитом, пренитом, датолитом, адуляром, хлоритом, эпидотом, пумпелиитом, кварцем, кальцитом. Крупнейшие месторождения этого типа находятся на полуострове Кивино в районе Верхнего озера (штат Мичиган, США), где оруденение приурочено к верхнепротерозойской толще. Главная масса меди добывается из мелафиров и конгломератов, но наиболее крупные выделения меди (до 400 т и более) встречены в кальцитовых жилах, содержащих самородное серебро и домейкит.

Из чего состоит медь состав
Медный самородок

Область применения

Конечно же, использование бронзы не теряет своей популярности и в наше время. Сувенирная продукция, декоративные предметы интерьера, украшения на ворота и калитки… Кроме того, сплав применяют для изготовления фурнитуры (ручки, петли, замки) и сантехники (краны, фитинги, прокладки, смесители). В промышленных сферах бронза также имеет обширные области использования. Так, литейный сплав используют для изготовления подшипников, уплотнительных колец, втулок.

бронза является сплавом олова и меди

На широкое применение бронзы особенно влияют её коррозионные свойства. По этой причине её используют для изготовления деталей механизмов, работающих при постоянном контакте с водой. Высокая упругость сплава позволяет изготавливать из него пружины и части контрольно-измерительной аппаратуры.

Физические свойства

Оптические

Цвет в свежем изломе светло-розовый, быстро переходящий в медно-красный, затем в коричневый; часто с желтой или пестрой побежалостью.

Черта медно-красная, блестящая.

Прозрачность. Непрозрачна. В тончайших пластинках просвечивает зеленым цветом.

Механические

Спайность не наблюдается.

Излом занозистый, крючковатый.

Химические свойства

Легко растворяется в разбавленной HNO 3 и в царской водке, в H 2 SO 4 — при нагревании, в НСl — с трудом. В водном растворе аммиака растворяется, окрашивая его в синий цвет. В полированных шлифах травится всеми основными реактивами. Внутреннее строение легко выявляется с помощью NH 4 OH + Н 2 O 2 или НСl+ CrO 3 (50%-ный раствор).

Прочие свойства

Очень ковка и тягуча. Электропроводность очень высокая; существенно понижается от примесей.

Из чего состоит медь состав

Поведение при нагревании. Чистая медь плавится при 1083°. Теплопроводность несколько меньше, чем у серебра.

Переплавка бронзы

Конечно, каждый сплав имеет как свои плюсы, так и минусы. Бронза – сплав, который состоит из меди и олова, и поэтому он отлично переносит любые переплавки. Его можно использовать несколько раз в совершенно разных целях. С другой стороны, если бронза содержит большое количество примесей, таких как магний, кремний, алюминий, то при переплавке механические свойства могут уменьшиться.

Это обусловлено тем, что легирующие элементы, улучшающие характеристики бронзы, при плавке окисляются и образуют тугоплавкие оксиды, которые располагаются по границам кристаллической решетки. Они нарушают связь между зернами, что делает бронзу более хрупкой.

сплав состоит из олова и меди массы

Источники меди для вторсырья

Экономия ресурсов – важная экологическая и технологическая задача. Медь – слишком ценный элемент, чтобы запросто им разбрасываться. Поэтому при утилизации бытовых устройств и приборов (телевизоров, холодильников, компьютерной техники) нужно срезать все медь содержащие элементы и сдавать их на пункты сбора вторсырья. На производствах должен быть организован централизованный сбор списанных силовых кабелей и трансформаторов, электродвигателей, прочих медь содержащих деталей и устройств. Определённое содержание меди есть в испорченных люминесцентных лампах, что тоже стоит учитывать при утилизации.

Читать также: Гальваническая кухня что это

Медь и медные сплавы, освоенные человечеством на самой заре цивилизации, остаются востребованными материалами и в технологическую эпоху, основу которой составляет железо. Современное промышленное производство невозможно себе представить без использования цветных металлов. В дальнейшем потребность в меди её сплавах будет только расти, поэтому очень важно относиться к данным материалам экономно и использовать их рационально.

Медь относится к группе цветных металлов, наиболее широко применяемых в промышленности. Порядковый номер меди в периодической системе Д. И. Менделеева — 29, атомный вес А = 63,57. Медь имеет гранецентрированную кубическую решетку (ГЦК) с периодом а = 3,607 Å. Удельный вес меди g = 8,94 г/см 3 , температура плавления — 1083 0 С. Чистая медь обладает высокой тепло — и электропроводностью. Удельное электрическое сопротивление меди 0,0175 мкОм×м, теплопроводность l = 395 Вт/(м×град). Предел прочности sв = 200…250 МПа, твердость 85…115 НВ, относительное удлинение d = 50 %, относительное сужение y = 75 %.

Медь — немагнитный металл. Она обладает хорошей технологичностью: обрабатывается давлением, резанием, легко полируется, хорошо паяется и сваривается, имеет высокую коррозионную стойкость. Основная область применения — электротехническая промышленность.

Электропроводность меди существенно понижается при наличии даже очень небольшого количества примесей. Поэтому в качестве проводникового материала применяют в основном особо чистую медь М00 (99,99 %), электролитическую медь М0 (99,95 %), М1 (99,9 %). Марки технической меди М2 (99,7 %), М3 (99,5 %), М4 (99,0 %).

В зависимости от механических свойств различают медь твердую, нагартованную (МТ) и медь мягкую, отожженную (ММ).

Вредными примесями в меди являются висмут, свинец, сера и кислород. Действие висмута и свинца аналогично действию серы в стали; они образуют с медью легкоплавкие эвтектики, располагающиеся по границам зерен, что приводит к разрушению меди при ее обработке давлением в горячем состоянии (температура плавления эвтектики соответственно 270 0 С и 326 0 С).

Сера и кислород снижают пластичность меди за счет образования хрупких химических соединений Сu2O и Сu2S.

В качестве конструкционного материала технически чистую медь применяют редко, так как она имеет низкие прочностные свойства, твердость. Основными конструкционными материалами на основе меди являются сплавы латуни и бронзы. Для маркировки медных сплавов используют следующее буквенное обозначение легирующих элементов:

  • О — олово; Ц — цинк; Х — хром;
  • Ж — железо; Н — никель; С — свинец;
  • К — кремний; А — алюминий; Ф — фосфор;
  • Мц — марганец; Мг – магний; Б – бериллий.

Как отличить бронзу от латуни и меди

Один из самых распространенных вопросов — это отличие этого сплава от других, похожих на него внешне. Конечно, в пределах промышленности и при помощи специальных реагентов сделать это довольно просто. Но как же быть, если определить материал необходимо в домашних условиях?

Начнем с того, что сплав состоит из олова и меди. Массы этих веществ в процентном содержании могут быть разными. Чем больше меди, тем более ярким будет цвет, а вот за счет содержания в сплаве олова, он будет на порядок тяжелее, чем, например, чистый Cu.

Если же сравнивать бронзу с латунью, то последняя имеет более желтоватый оттенок. Сама по себе медь очень пластична, а вот сплавы на её основе достаточно упругие и твердые. Определить, какой материал перед вами, можно также путем нагрева. Так, у латуни под воздействием высокой температуры выделяется оксид цинка и изделие приобретает пепельный «налет». А вот бронза при нагревании не будет изменять своих свойств.

Физико-химические свойства меди

В естественной среде (на воздухе) у меди яркий желто-красный оттенок. Этот цвет придает металлу оксидная пленка, образующаяся на его поверхности. Чистый металл – это довольно мягкий материал, он легко подвергается прокату и вытяжке. Но использование при его получении определенных примесей позволяет увеличить ее твердость и изменить другие параметры.

Плотность этого материала равна 8890 кг/ м3, температура плавления лежит в пределах 1100 °C.

Ключевым свойством, которое определило применяемость в быту и производстве. Кроме высокой электропроводимости меди свойственна высокая теплопроводности. Использование таких примесей, как железо, олово и некоторые другие оказывают существенное влияние на ее свойства.

Кроме названных параметров, у меди высокая температура плавления и кипения. Медь обладает высокой стойкостью к воздействию коррозии.

Медь в природе

Физические параметры меди позволяют получать из нее различную продукцию, например, проволоку толщиной в несколько микрон.

Медь и ее соединения нашли свое применение, в первую очередь, в электротехнической промышленности, впрочем без нее вряд ли обойдется любая другая область промышленности.

Произведения искусства

Довольно часто можно встретить различные бронзовые статуэтки и фигурки. Многие произведения искусства были созданы еще в античные времена и в Средние века.

сплав меди с оловом называется

Сплавы, содержащие медь и олово, применяются для изготовления:

  • Заборов и ворот, которые получаются не только невероятно красивыми, но и прочными.
  • Элементов лестничных конструкций.
  • Сувенирной продукции и скульптурных композиций.
  • Декоративных осветительных приборов: бра и люстр.
  • Предметов для оформления интерьера.

Для того чтобы отлить необходимую композицию, создают специальную модель из дерева, гипса или полимерных материалов – так называемая формовка. Полости данной фигуры заполняют глиной и после отливки извлекают. После изготовления поверхность может быть покрыта позолотой, слоем никеля, хрома или же серебром.

Очень важно отметить, что, как правило, для изготовления произведений искусства используется сплав олова и меди без легирующих элементов. Это обуславливается тем, что чем больше таких составляющих присутствует в бронзе, тем больше её усадка, что негативно сказывается на качестве и форме изделия.

Способы производства меди

Среди способов производства меди из руд с концентратами выделяют пирометаллургический метод и гидрометаллургический. Последний не получил широкого распространения. Это продиктовано невозможностью одновременного с медью восстановления прочих металлов. Он используется для обработки окисленной или самородной руды с бедным содержанием меди. Отличаясь от него, пирометаллургический способ позволяет разработку любого сырья с извлечением всех компонентов. Очень эффективен он для подвергающихся обогащению руд.

Основной операцией такого процесса производства меди служит плавка. При ее производстве используют медные руды или их обожженные концентраты. В ходе подготовки к данной операции схемой производства меди предусмотрено их обогащение способом флотации. При этом руды, содержащие наряду с медью ценные элементы: теллур или селен, золото с серебром, стоит обогащать в целях одновременного перехода данных элементов в медный концентрат. Образованный таким методом концентрат может содержать до 35% меди, столько же железа, до 50% серы, а также пустую породу. Обжигу он подвергается в целях снижения до приемлемого содержания в нем серы.

Из чего состоит медь состав

Концентрат обжигается в преимущественно окислительной среде, что позволяет удалить примерно половины содержания серы. Полученный таким образом концентрат при переплавке дает довольно содержательный штейн. Еще обжиг помогает снизить вдвое расход топлива отражательной печью. Достигается это при качественном смешении состава шихты, обеспечивающем ее нагревание до 600ºС. Но богатые медью концентраты лучше перерабатывать, не обжигая, так как после этого возрастают утраты меди с пылью и в шлаке.

Итогом такой последовательности производства меди является деление объема расплава надвое: на штейн-сплав и шлак-сплав. Первую жидкость, как правило, составляют медные сульфиды и железные, вторую – окислы кремния, железа, алюминия и кальция. Переработку концентратов в сплав штейн ведут при помощи электрической либо отражательной печей различных видов. Чисто медные либо сернистые руды лучше плавить с помощью шахтных печей. К последним также стоит применить медно-серное плавление, позволяющее улавливать газы, одновременно извлекая серу.

В специальную печь небольшими порциями загружаются медные руды с кокс, а также известняки и оборотные продукты. Верхняя часть печи создает восстановительную атмосферу, нижняя часть – окислительную. По мере расплавления нижнего слоя масса медленно спускается вниз для встречи с разогретыми газами. Верхняя часть печи нагрета до 450 ºС, а температура отходящих газов составляет 1500 ºС. Это необходимо при создании условий очищения от пыли еще до того, как начнется выделение паров с серой.

Из чего состоит медь состав

В результате такой плавки получают штейн, включающий от 8 до 15% меди, шлак, главным образом содержащий известь с железным силикатом, а еще колошниковый газ. Из последнего после предварительного осаждения пыли удаляют серу. Задача увеличения в штейн-сплаве процента Cu при производстве меди в мире решается применением сократительной плавки. Она заключается в помещении в печь наряду со штейном кокса, флюса из кварца, известняка.

При нагревании смеси происходит процесс восстановления медных окисей и железных оксидов. Сплавляемые друг с другом железные и медные сульфиды составляют штейн первоначальный. Расплавляемый железный силикат при стекании вдоль поверхностей откосов принимают в себя прочие компоненты, пополняя шлак. Результатом такой плавки является получение обогащенного штейна со шлаком, включающих медь до 40% и 0,8% соответственно. Драгоценные металлы, такие как серебро с золотом, почти не растворяясь в сплаве шлака, целиком оказываются в сплаве штейна.

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями: